平成26年度千葉県森林整備加速化·林業再生事業

県産スギを用いた単板積層材(LVL)による 厚板構造部材の開発 実績報告書

2016年3月 株式会社 キーテック

目次

- 1. はじめに
- 2. 事業内容
 - 2.1 事業目的
 - 2.2 実施項目
 - 2.3 実施体制
 - 2.4 事業成果
- 3. 厚板 L V L 接合部性能
 - 3.1 GIR接合部試験
 - 3.2 LSB接合部試験
 - 3.3 木造と意匠について
- 4. 厚板 LVL 意匠
 - 4.1 なぜ穴あき加工か
 - 4.2 開口パターン
 - 4.3 ロボット切削加工
 - 4.4 構造実験の結果
 - 4.5 まとめ
- 5. 厚板 LVL の鉄骨造への適用
 - 5.1 はじめに
 - 5.2 必要壁長のケーススタディ
 - 5.3 5階建て商業ビルのモデル構造設計
 - 5.4 既存2階建て鉄骨造オフィスビルへの適用
 - 5.5 まとめ
- 6. まとめと今後の課題

【付録】

1. はじめに

地域の森林を活性化させるには、森林の用途開発が欠かせない。日本では従来は製材用途が住宅部材としての製材や家具等であったのが、乾燥・寸法安定性の面で再構成材である合板・集成材・単板積層材(Laminated Veneer Lumber, 以下LVL)がこの20年で台頭してきた。

また、国産材活用の流れから国産材を部材として使う流れがここ10年で高まりつつある。LVLは、原木丸太を剝いて作った単板を、繊維方向をほぼ平行にして、接着剤を用いて積層接着して製造する木質材料で、建築構造材や造作材として利用されているため、製材・集成材の丸太からの歩留りが30%程度なのに比べ、LVLや合板は丸太をかつら剥きにして重ね合わせるので歩留まりを60%まであげることができ、資源の有効利用の観点から最適である。

建築材料としてみると、LVLは面材から軸材まで寸法が比較的自由に製作できるのが利点である。LVLは原木として間伐等小径木を利用できること、使用目的に応じた強度性能を有する断面・長さの軸材・面材を作れる。最大の特長は、製材品とは異なり、構造解析が可能な構造材料である。

一方、LVLの現在のユーザーである住宅着工数が近年伸び悩む中、非住宅、特に中層 大規模木造分野での活用が望まれ、こうした建物用の部材開発が求められている。木質材 料の用途を広げるにあたり非住宅分野で使われるには、以下の二つの方向性が考えられる。

ひとつは木造躯体のまま大型化することと、既存のS造・RC造の中で木質材料を構造部材として使えるようにすることである。集成材では大規模木造としての構造開発が昔からおこなわれてきたため構造躯体のデータ整備が進められてきたが、LVLはまだ構造躯体のデータ整備の面では集成材と同列でなく、木質材料として同列に扱えるようにしていく必要がある。一方、LVLの特徴を生かして、集成材にはできない面材、および厚板としての部材開発を行う必要がある。

木質厚板工法は、ここ数年着目されている直交集成板(CLT)でもその可能性が提示されている新たな木質工法である。しかし、LVLは1988年にJASとなって25年以上の実績があり、木質厚板工法が可能であるにも関わらず、構造部材として設計者への認知も高い割に厚板としての使用方法はまだ知られていないのが現状である。今後、さまざまな木質材料が選択的に用いられることを考えると、構造性能の情報整備とともにLVLの特徴を生かした意匠的魅力も併せて提案してくことも重要である。

さらに、東京オリンピックの開催が決定し、鉄骨・コンクリートの資材高騰を目の前にして、代替材料・工法としての木質材料への注目が高まっている。このタイミングでRC・S造建築にも使用できる部材開発を行うことで、さらに単板積層材の認知を高め需要を開拓することを期待している。

2. 事業内容

2.1 事業目的

平成25年に日本農林規格に、B種構造用単板積層材が追加されたことにより、LVLは中層大規模木造での厚板壁としての使用が期待される。これを背景とし、本事業では下記に重点を置いて開発を行った。

- ①中層大規模建築物に用いるLVL厚板壁を想定した接合部の構造性能の検討
- ②生産性とデザインを兼ね備えた付加価値の高いスギLVL厚板壁の試作および構造開発
- ③鉄骨造の中で厚板LVLを構造部材として使うための検討

2.2 実施項目

具体的な実施項目として、下記内容を実施した。

①LVL厚板壁の接合部性能検証

LVL厚板壁の建築躯体における実際の接合部を想定し、グルードインロット(GIR)、 ラグスクリューボルト (LSB) 接合部の性能検証を行った。

②意匠性のある厚板 LVL の開発

生産性とデザインを兼ね備えた付加価値の高いスギLVL厚板壁の試作および構造開発のため、加工性、意匠性、構造性能についての実験、検証を行った。

③ S 造との複合構造についての検証

鉄骨造の中に耐震壁としてLVL厚板壁のおさまりについて、検証を行った。

2.3 実施体制

委員長	東京大学	腰原 幹雄	生産技術研究所 木質構造デザイン工学 教授
委 員	大分大学	田中 圭	工学部福祉環境工学科建築コース 助教
	桜設計集団	佐藤 孝浩	
	ビルディングランドスケープ	山代 悟	
	アンズスタジオ	竹中 司	
	㈱リズムデザイン=モヴ	中田 琢史	構造デザイナー/代表取締役
VL協会会員	㈱オーシカ	辻 健	市場開発推進部 部長
	㈱オーシカ	濱井 篤志	中央研究所 主任研究員
	㈱ストローグ	大倉憲峰	代表取締役社長
	㈱ストローグ	大倉義邦	専務取締役
	㈱スクリムテックジャパン	河野泰之	代表取締役社長
	㈱インターレックス	高橋圭吾	
	㈱ウッドワン	疋田 慎二	住宅システム営業部 構造設計
オプザーバー	ビルディングランドスケープ	国重 安沙	
	㈱キーテック	朴 智秀	開発本部
	桜設計集団	池谷 聡史	
**C	A RI ur lin A	#1 P#	±++
事務局	全国LVL協会	井上国雄	事務局長
		李元羽	技術部長
		成田敏基	技術課長
		村山和繁	

2.4 事業成果

本事業の成果として、以下の内容を得た。

①LVL厚板壁の接合部性能検証 接合部の試験を行い、構造設計に使えるデータを得た。

②意匠性のあるLVL厚板壁の開発

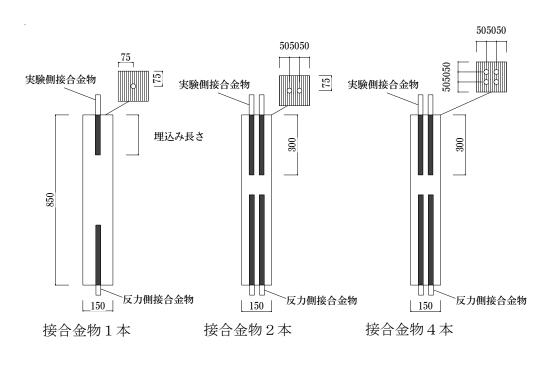
LVL厚板壁について、加工のための最適なプログラムを得た。また、実大壁試験を行い、構造設計に使えるデータを得た。

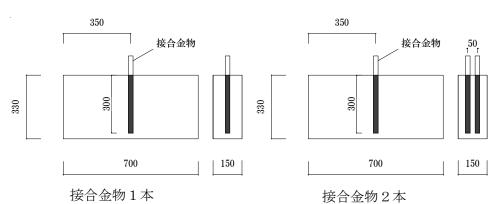
③ S 造との複合構造についての検証

鉄骨造にLVL厚板壁を適用した建築の試設計と検証を行った。

3.1 GIR 接合部試験

3.1.1 序


様々な断面の構造材が生産可能で、大型木造建築物に多岐にわたり使用されるであろう LVL(単板積層材)に、GIR接合法を用いた場合の接合性能を把握するために引抜き試験を 行った。


3.1.2 試験体

試験体リストを表 3.1.2-1に、試験体形状を図 3.1.2-1に示す。試験体の母材にはスギ LVL(A 種構造用単板積層材及び B 種構造用単板積層材)を用いた。接合金物は中空型全ねじボルト(ϕ 24,ホームコネクター製)を用いた。接合金物の埋込み方向は繊維平行方向と繊維直交方向の 2 種類とした。繊維平行方向の試験体では、接合金物を 1 本、または 2 本挿入したもの 2 種類を用意した。接合金物 1 本を挿入した場合の埋込み長さは、100mm、200mm、300mm、接合金物 2 本を挿入した場合の埋込み長さは 300mm とした。また、反力側の接合金物は実験側の接合金物よりも埋込み長さを長くし、実験側接合金物に先行して反力側接合金物が破壊しないような設計とした。繊維直交方向の試験体では、接合金物を 1 本、2 本、または 4 本挿入したもの 3 種類を用意し、いずれの場合も埋込み長さは 300mm とした。充填用接着剤はエポキシ樹脂接着剤(TE-243L2: オーシカ)を用いた。試験体数は 16 シリーズ各 6 体の計 96 体とした。

表 3.1.2-1 試験体リスト

	試験体名	樹種	種類	埋込み 方向	埋込み長さ (mm)	金物本数	試験体数
	P-CJ-A-100 × 1	スギ			100		
	P-CJ-A-200 × 1		A種		200	1	
	P-CJ-A-300 × 1				300		
	P-CJ-A-300 × 2					2	各6体 (計96体)
試験I	P-CJ-A-300 × 4			繊維 平行		4	
6八河久 1	P-CJ-B-100 × 1		B種		100	1	
	P-CJ-B-200 × 1				200		
	P-CJ-B-300 × 1				300		
	P-CJ-B-300 × 2					2	
	P-CJ-B-300 × 4					4	
試験Ⅱ	O-CJ-A-300 × 1		A種	繊維直交		1	
	O-CJ-A-300 × 2					2	
	O-CJ-A-300 × 4					4	
	O-CJ-B-300 × 1		B種			1	
	O-CJ-B-300 × 2					2	
	O-CJ-B-300 × 4					4	

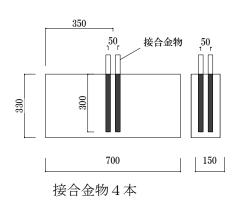


図 3.1.2-1 試験体形状(mm)

3.1.3 試験方法

試験に用いた加力装置の概要を図2に示す。載荷には2000kN万能試験機を使用し、単調引張載荷(0.5 mm/min)で行った。接合金物と母材の相対引抜け量はストレインゲージ式変位計(東京測器研究所:CDP-25)を用いて測定を行った。また、接合金物2本及び4本の場合の試験では、不均等加力を防ぐために、接合金物に高ナットを用いて延長用のボルトを接続し、延長用ボルト部分のひずみを計測し、初期ひずみを均一にして加力することによって、接合金物が均等に加力されるようにした。

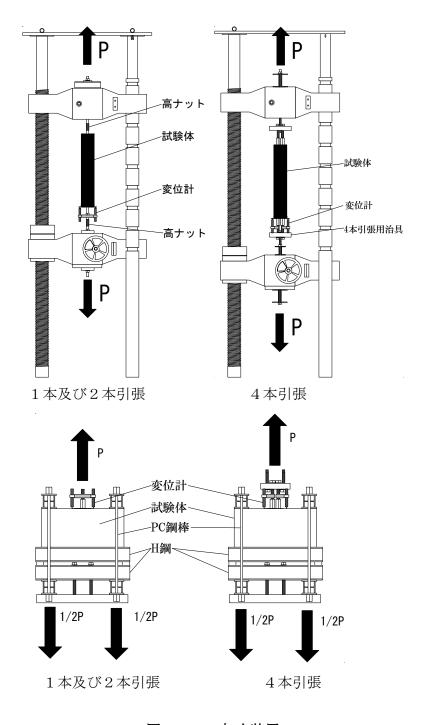


図 3.1.3-1 加力装置

3.1.4 試験結果

本節では、試験体の破壊性状、試験結果についてパラメータごとに示す。初期剛性は、それぞれの荷重-変位曲線における最大荷重の 0.1 倍と 0.4 倍の荷重を結んだ直線の傾きとした。表 3.1.4-1~3.1.4-96 に角試験体の試験結果を、図 3.1.4-1~3.1.4-96 に荷重 - 変位曲線を示す。また、写真 3.1.4-1~3.1.4-32 に代表的な破壊性状を示す。

+

<u>P-CJ-A-100×1 シリーズ</u>

P-CJ-A-100×1 No.1

表 3.1.4-1 試験結果

破壞性状 : 木破

最大耐力 : 32.56 kN

初期剛性 : 69.77 kN /mm

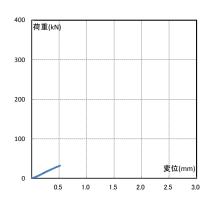


図 3.1.4-1 荷重-変位曲線

P-CJ-A-100×1 No.3

表 3.1.4-3 試験結果

破壊性状 : 木破

最大耐力 : 40.96 kN

初期剛性 : 121.66 kN /mm

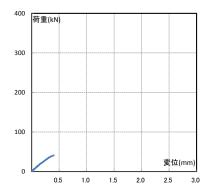


図 3.1.4-3 荷重-変位曲線

P-CJ-A-100×1 No.2

表 3.1.4-2 試験結果

破壊性状 : 木破

最大耐力 : 35.65 kN

初期剛性 : 123.52 kN/mm

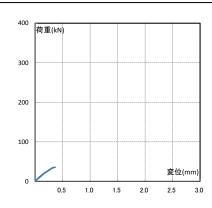


図 3.1.4-2 荷重-変位曲線

P-CJ-A-100×1 No.4

表 3.1.4-4 試験結果

破壊性状 : 木破

最大耐力 : 32.62 kN

初期剛性 : 165.42 kN /mm

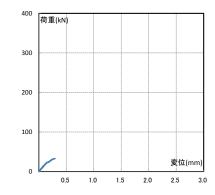


図 3.1.4-4 荷重-変位曲線

P-CJ-A-100×1 No.5

表 3.1.4-5 試験結果

破壊性状 : 木破

最大耐力 : 39.40 kN

初期剛性 : 166.48 kN/mm

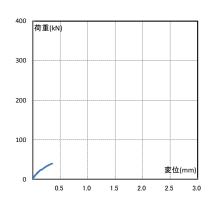


図 3.1.4-5 荷重-変位曲線

写真 3.1.4-1 木破

P-CJ-A-200×1 シリーズ

P-CJ-A-200×1 No.1

表 3.1.4-7 試験結果

破壞性状 : 木破

最大耐力 : 67.70 kN

初期剛性 : 307.73 kN/mm

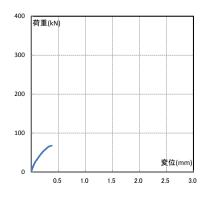


図 3.1.4-7 荷重-変位曲線

P-CJ-A-100×1 No.6

表 3.1.4-6 試験結果

破壊性状 : 木破

最大耐力 : 37.60 kN

初期剛性 : 245.22 kN /mm

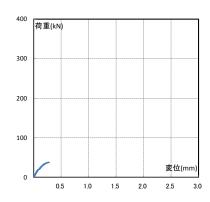


図 3.1.4-6 荷重-変位曲線

写真 3.1.4-2 木破

P-CJ-A-200×1 No.2

表 3.1.4-8 試験結果

破壊性状 : 木破

最大耐力 : 69.41 kN

初期剛性 : 170.70 kN/mm

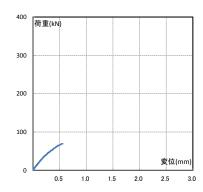


図 3.1.4-8 荷重-変位曲線

P-CJ-A-200×1 No.3

表 3.1.4-9 試験結果

破壊性状 : 木破

最大耐力 : 70.17 kN

初期剛性 : 121.56 kN/mm

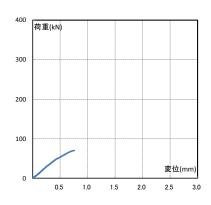


図 3.1.4-9 荷重-変位曲線

$\text{P-CJ-A-200} \times 1 \text{ No.5}$

表 3.1.4-11 試験結果

破壞性状 : 木破

最大耐力 : 74.15 kN

初期剛性 : 556.13 kN /mm

図 3.1.4-11 荷重-変位曲線

写真 3.1.4-3 木破

P-CJ-A-200×1 No.4

表 3.1.4-10 試験結果

破壊性状 : 木破

最大耐力 : 72.43 kN

初期剛性 : 120.76 kN /mm

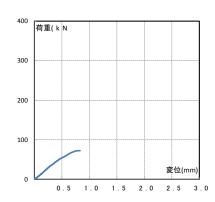


図 3.1.4-10 荷重-変位曲線

P-CJ-A-200 × 1 No.6

表 3.1.4-12 試験結果

破壞性状 : 木破

最大耐力 : 72.27 kN

|初期剛性 : 115.84 kN /mm

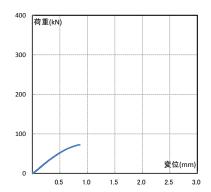


図 3.1.4-12 荷重-変位曲線

写真 3.1.4-4 木破

P-CJ-A-300×1シリーズ

P-CJ-A-300 × 1 No.1

表 3.1.4-13 試験結果

破壞性状 : 木破

最大耐力 : 107.81kN

初期剛性 : 210.78 kN /mm

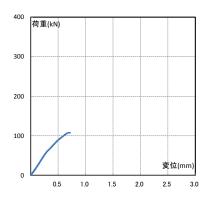


図 3.1.4-13 荷重-変位曲線

P-CJ-A-300 × 1 No.2

表 3.1.4-14 試験結果

破壊性状 : 木破

最大耐力 : 113.41 kN

初期剛性 : 130.92 kN/mm

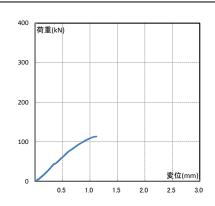


図 3.1.4-14 荷重-変位曲線

P-CJ-A-300 × 1 No.3

表 3.1.4-15 試験結果

破壊性状 : 木破

最大耐力 : 101.99 kN

初期剛性 : 524.28 kN /mm

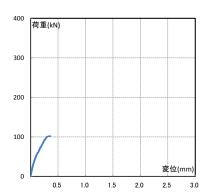


図 3.1.4-15 荷重-変位曲線

P-CJ-A-300 × 1 No.4

表 3.1.4-16 試験結果

破壊性状 : 木破

最大耐力 : 106.36 kN

初期剛性 : 計測不能

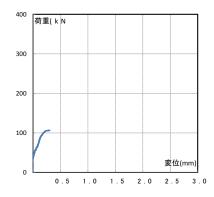


図 3.1.4-16 荷重-変位曲線

P-CJ-A-300 × 1 No.5

表 3.1.4-17 試験結果

破壞性狀 : 木破

最大耐力 : 104.76 kN

初期剛性 : 140.44 kN /mm

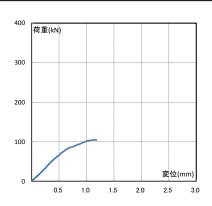


図 3.1.4-17 荷重-変位曲線

写真 3.1.4-5 木破

P-CJ-A-300×2 シリーズ

 $P-CJ-A-300 \times 2 \text{ No.}1$

表 3.1.4-19 試験結果

破壞性状 : 木破

最大耐力 : 199.18 kN

初期剛性 : 477.36 kN /mm

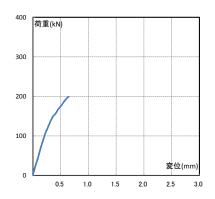


図 3.1.4-19 荷重-変位曲線

P-CJ-A-300 × 1 No.6

表 3.1.4-18 試験結果

破壊性状 : 木破

最大耐力 : 107.76 kN

初期剛性 : 128.57 kN /mm

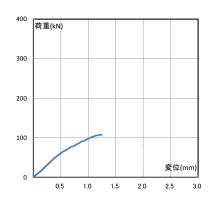


図 3.1.4-18 荷重-変位曲線

写真 3.1.4-6 木破

P-CJ-A-300 × 2 No.2

表 3.1.4-20 試験結果

破壞性状 : 木破

最大耐力 : 217.97 kN

初期剛性 : 625.41 kN /mm

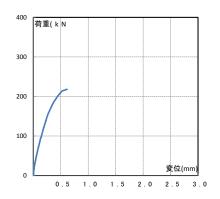


図 3.1.4-20 荷重-変位曲線

$P-CJ-A-300 \times 2 \text{ No.}3$

表 3.1.4-21 試験結果

破壞性狀 : 木破

最大耐力 : 197.24 kN

初期剛性 : 501.46 kN /mm

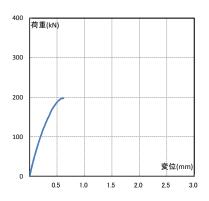


図 3.1.4-21 荷重-変位曲線

$P-CJ-A-300 \times 2 \text{ No.}4$

表 3.1.4-22 試験結果

破壊性状 : 木破

最大耐力 : 208.88 kN

初期剛性 : 810.90 kN /mm

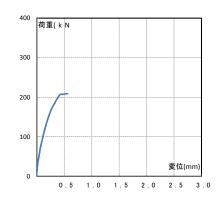


図 3.1.4-22 荷重-変位曲線

P-CJ-A-300 × 2 No.5

表 3.1.4-23 試験結果

破壊性状 : 木破

最大耐力 : 220.80 kN

初期剛性 : 545.62 kN /mm

P-CJ-A-300 \times 2 No.6

表 3.1.4-24 試験結果

破壊性状 : 木破

最大耐力 : 195.16 kN

|初期剛性 : 510.13 kN /mm

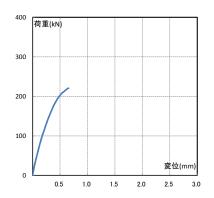


図 3.1.4-23 荷重-変位曲線

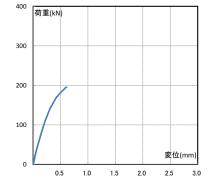


図 3.1.4-24 荷重-変位曲線

写真 3.1.4-7 木破

写真 3.1.4-8 木破

P-CJ-A-300×4シリーズ

 $P-CJ-A-300 \times 4 \text{ No.}1$

表 3.1.4-25 試験結果

破壞性状 :集合破壞

最大耐力 : 313.66 kN

初期剛性 : 計測不能

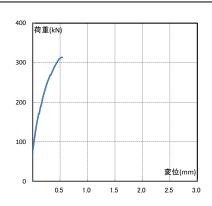


図 3.1.4-25 荷重-変位曲線

P-CJ-A-300 × 4 No.2

表 3.1.4-26 試験結果

破壊性状 :集合破壊

最大耐力 : 268.56 kN

初期剛性 : 898.61 kN/mm

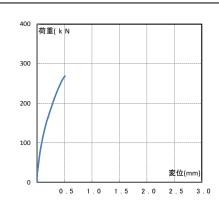


図 3.1.4-26 荷重-変位曲線

P-CJ-A-300 × 4 No.3

表 3.1.4-27 試験結果

破壊性状 :集合破壊

最大耐力 : 287.10 kN

初期剛性 : 657.48 kN /mm

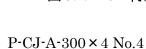


表 3.1.4-28 試験結果

破壊性状 :集合破壊

最大耐力 : 329.18 kN

初期剛性 : 783.76 kN /mm

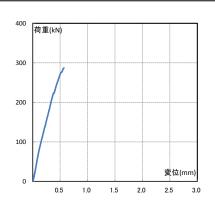


図 3.1.4-27 荷重-変位曲線

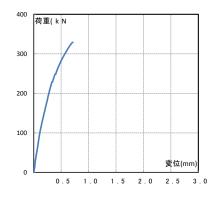


図 3.1.4-28 荷重-変位曲線

$P-CJ-A-300 \times 4 \text{ No.5}$

表 3.1.4-29 試験結果

破壞性状 :集合破壞

最大耐力 : 324.92 kN

初期剛性 : 937.07 kN /mm

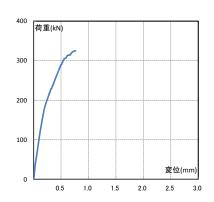


図 3.1.4-29 荷重-変位曲線

写真 3.1.4-9 集合破壊

P-CJ-B-100×1 シリーズ

P-CJ-B-100 × 1 No.1

表 3.1.4-31 試験結果

破壊性状 : 木破

最大耐力 : 34.38 kN

初期剛性 : 147.34 kN /mm

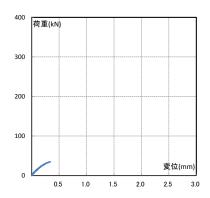


図 3.1.4-31 荷重-変位曲線

P-CJ-A-300 × 4 No.6

表 3.1.4-30 試験結果

破壞性状 :集合破壞

最大耐力 : 263.22 kN

初期剛性 : 1144.43 kN/mm

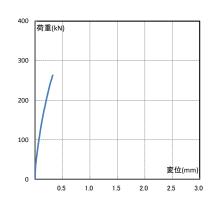


図 3.1.4-30 荷重-変位曲線

写真 3.1.4-10 集合破壊

$P-CJ-B-100 \times 1 \text{ No.}2$

表 3.1.4-32 試験結果

破壞性状 : 木破

最大耐力 : 31.77 kN

初期剛性 : 163.02 kN/mm

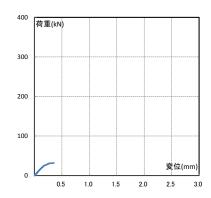


図 3.1.4-32 荷重-変位曲線

P-CJ-B-100 × 1 No.3

表 3.1.4-33 試験結果

破壞性状 : 木破

最大耐力 : 40.96 kN

初期剛性 : 292.57 kN /mm

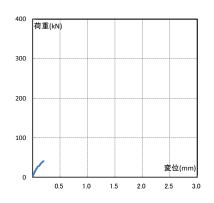


図 3.1.4-33 荷重-変位曲線

P-CJ-B-100 × 1 No.5

表 3.1.4-35 試験結果

破壊性状 : 木破

最大耐力 : 37.72 kN

初期剛性 : 188.60 kN /mm

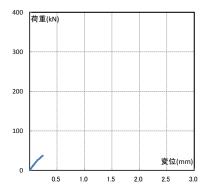


図 3.1.4-35 荷重-変位曲線

写真 3.1.4-11 木破

$P-CJ-B-100 \times 1 \text{ No.}4$

表 3.1.4-34 試験結果

破壊性状 : 木破

最大耐力 : 40.65 kN

初期剛性 : 147.50 kN /mm

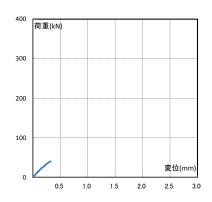


図 3.1.4-34 荷重-変位曲線

P-CJ-B-100 × 1 No.6

表 3.1.4-36 試験結果

破壞性状 : 木破

最大耐力 : 36.39 kN

|初期剛性 : 404.33 kN /mm

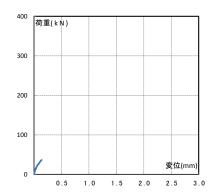


図 3.1.4-36 荷重-変位曲線

写真 3.1.4-12 木破

P-CJ-B-200×1シリーズ

P-CJ-B-200 × 1 No.1

表 3.1.4-37 試験結果

破壞性状 : 木破

最大耐力 : 72.76 kN

初期剛性 : 352.06 kN /mm

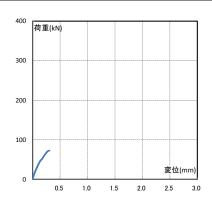


図 3.1.4-37 荷重-変位曲線

P-CJ-B-200 × 1 No.2

表 3.1.4-38 試験結果

破壊性状 : 木破

最大耐力 : 73.55 kN

初期剛性 : 277.15 kN/mm

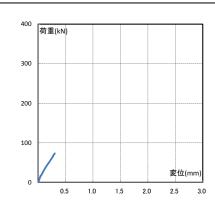


図 3.1.4-38 荷重-変位曲線

P-CJ-B-200×1 No.3

表 3.1.4-39 試験結果

破壊性状 : 木破

最大耐力 : 67.97 kN

初期剛性 : 192.50 kN /mm

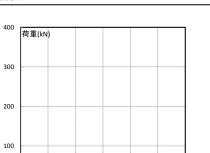


図 3.1.4-39 荷重-変位曲線

変位(mm)

P-CJ-B-200×1 No.4

表 3.1.4-40 試験結果

破壊性状 : 木破

最大耐力 : 78.71 kN

初期剛性 : 212.14 kN /mm

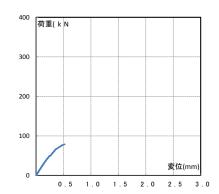


図 3.1.4-40 荷重-変位曲線

P-CJ-B-200×1 No.5

表 3.1.4-41 試験結果

破壊性状 : 木破

最大耐力 : 65.77 kN

初期剛性 : 226.79 kN /mm

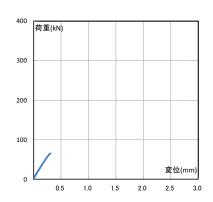


図 3.1.4-41 荷重-変位曲線

写真 3.1.4-13 木破

<u>P-CJ-B-300×1シリーズ</u>

P-CJ-B-300×1 No.1

表 3.1.4-43 試験結果

破壞性状 : 木破

最大耐力 : 101.08 kN

初期剛性 : 203.76 kN /mm

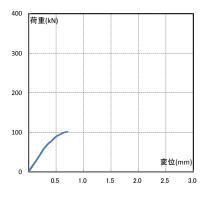


図 3.1.4-43 荷重-変位曲線

P-CJ-B-200×1 No.6

表 3.1.4-42 試験結果

破壊性状 : 木破

最大耐力 : 80.07 kN

初期剛性 : 231.82 kN /mm

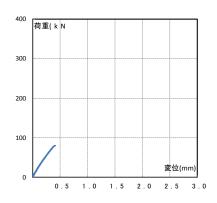


図 3.1.4-42 荷重-変位曲線

写真 3.1.4-14 木破

P-CJ-B-300×1 No.2

表 3.1.4-44 試験結果

破壊性状 : 木破

最大耐力 : 112.23 kN

初期剛性 : 275.86 kN/mm

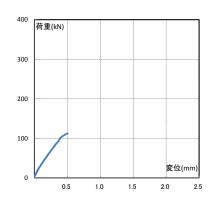


図 3.1.4-44 荷重-変位曲線

P-CJ-B-300×1 No.3

表 3.1.4-45 試験結果

破壊性状 : 木破

最大耐力 : 102.47 kN

初期剛性 : 516.85 kN /mm

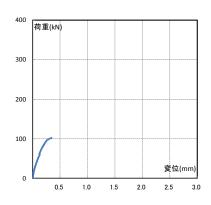


図 3.1.4-45 荷重-変位曲線

P-CJ-B-300×1 No.5

表 3.1.4-47 試験結果

破壞性状 : 木破

最大耐力 : 97.20 kN

初期剛性 : 270.46 kN /mm

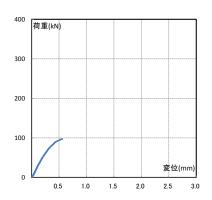


図 3.1.4-47 荷重-変位曲線

写真 3.1.4-15 木破

P-CJ-B-300×1 No.4

表 3.1.4-46 試験結果

破壊性状 : 木破

最大耐力 : 106.66 kN

初期剛性 : 316.81 kN /mm

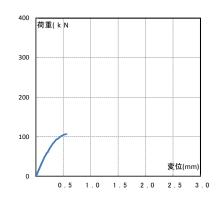


図 3.1.4-46 荷重-変位曲線

P-CJ-B-300×1 No.6

表 3.1.4-48 試験結果

破壊性状 : 木破

最大耐力 : 96.33 kN

|初期剛性 : 201.72 kN /mm

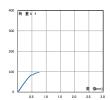


図 3.1.4-48 荷重-変位曲線

写真 3.1.4-16 木破

P-CJ-B-300×2 シリーズ

P-CJ-B-300×2 No.1

表 3.1.4-49 試験結果

破壞性状 : 木破

最大耐力 : 184.06 kN

初期剛性 : 446.48 kN /mm

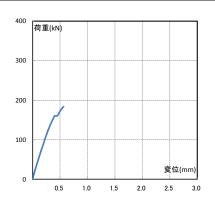


図 3.1.4-49 荷重-変位曲線

P-CJ-B-300×2 No.2

表 3.1.4-50 試験結果

破壊性状 : 木破

最大耐力 : 178.57 kN

初期剛性 : 432.02 kN/mm

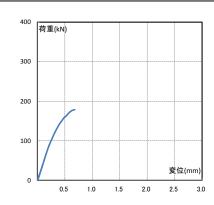


図 3.1.4-50 荷重-変位曲線

P-CJ-B-300×2 No.3

表 3.1.4-51 試験結果

破壊性状 : 木破

最大耐力 : 187.84 kN

初期剛性 : 521.78 kN /mm

表 3.1.4-52 試験結果

破壊性状 : 木破

最大耐力 : 201.06 kN

初期剛性 : 532.13 kN /mm

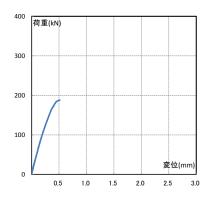


図 3.1.4-51 荷重-変位曲線

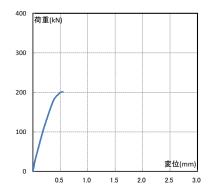


図 3.1.4-52 荷重-変位曲線

P-CJ-B-300×2 No.5

表 3.1.4-53 試験結果

破壞性状 : 木破

最大耐力 : 178.22 kN

初期剛性 : 538.35 kN/mm

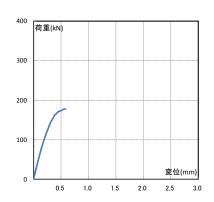


図 3.1.4-53 荷重-変位曲線

写真 3.1.4-17 木破

<u>P-CJ-B-300×4 シリーズ</u>

P-CJ-B-300×4 No.1 表 **3.1.4-55** 試験結果

破壊性状 : 母材の破壊

最大耐力 : 312.28 kN

初期剛性 : 807.62 kN /mm

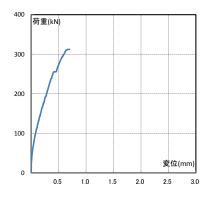


図 3.1.4-55 荷重-変位曲線

P-CJ-B-300×2 No.6

表 3.1.4-54 試験結果

破壊性状 : 木破

最大耐力 : 187.11 kN

初期剛性 : 576.77 kN /mm

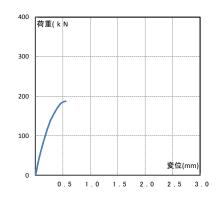


図 3.1.4-54 荷重-変位曲線

写真 3.1.4-18 木破

P-CJ-B-300×4 No.2 表 **3.1.4-56** 試験結果

破壊性状 : 母材の破壊

最大耐力 : 340.36 kN

初期剛性 : 551.94 kN /mm

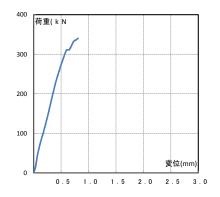


図 3.1.4-56 荷重-変位曲線

P-CJ-B-300×4 No.3

表 3.1.4-57 試験結果

破壊性状 : 母材の破壊

最大耐力 : 333.72 kN

初期剛性 : 654.55 kN /mm

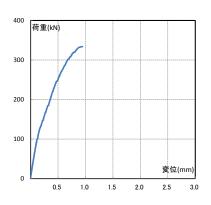


図 3.1.4-57 荷重-変位曲線

P-CJ-B-300×4 No.5

表 3.1.4-59 試験結果

破壊性状 : 母材の破壊

最大耐力 : 311.62 kN

初期剛性 : 559.80 kN /mm

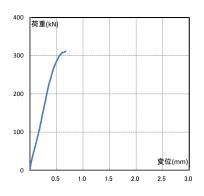


図 3.1.4-59 荷重-変位曲線

写真 3.1.4-19 母材の破壊

P-CJ-B-300×4 No.4

表 3.1.4-58 試験結果

破壊性状 : 母材の破壊

最大耐力 : 302.12 kN

初期剛性 : 619.10 kN /mm

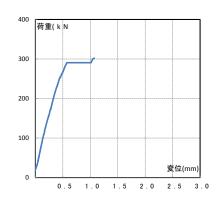


図 3.1.4-58 荷重-変位曲線

P-CJ-B-300×4 No.6

表 3.1.4-60 試験結果

破壊性状 : 母材の破壊

最大耐力 : 278.16 kN

初期剛性 : 856.38 kN /mm

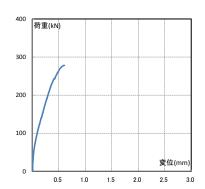


図 3.1.4-60 荷重-変位曲線

写真 3.1.4-20 母材の破壊

<u>O-CJ-A-300×1シリーズ</u>

O-CJ-A-300 × 1 No.1

表 3.1.4-61 試験結果

破壞性状 : 木破

最大耐力 : 112.28 kN

初期剛性 : 115.78 kN/mm

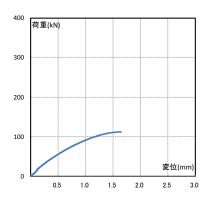


図 3.1.4-61 荷重-変位曲線

O-CJ-A-300 × 1 No.2

表 3.1.4-62 試験結果

破壞性状 : 木破

最大耐力 : 102.96 kN

初期剛性 : 99.59 kN /mm

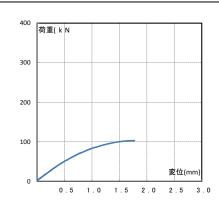


図 3.1.4-62 荷重-変位曲線

O-CJ-A-300 × 1 No.3

表 3.1.4-63 試験結果

破壊性状 : 木破

最大耐力 : 114.02 kN

初期剛性 : 97.17 kN /mm

表 3.1.4-64 試験結果

破壊性状 : 木破

最大耐力 : 110.24 kN

初期剛性 : 107.06 kN /mm

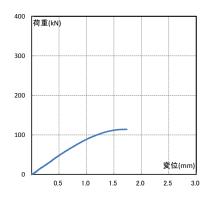


図 3.1.4-63 荷重-変位曲線

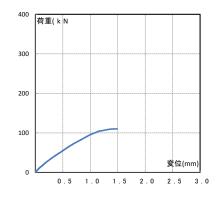


図 3.1.4-64 荷重-変位曲線

O-CJ-A-300 × 1 No.5

表 3.1.4-65 試験結果

破壞性状 : 木破

最大耐力 : 111.22 kN

初期剛性 : 94.83 kN /mm

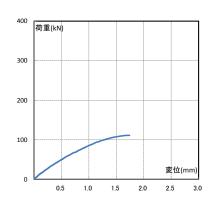


図 3.1.4-65 荷重-変位曲線

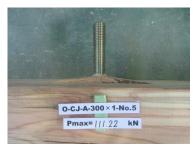


写真 3.1.4-21 木破

O-CJ-A-300×2 シリーズ

O-CJ-A-300 × 2 No.1

表 3.1.4-67 試験結果

破壞性状 : 木破

最大耐力 : 223.98 kN

初期剛性 : 148.44 kN/mm

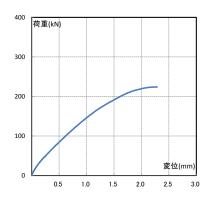


図 3.1.4-67 荷重-変位曲線

O-CJ-A-300 × 1 No.6

表 3.1.4-66 試験結果

破壞性狀 : 木破

最大耐力 : 107.95 kN

|初期剛性 : 116.12 kN /mm

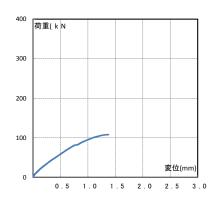


図 3.1.4-66 荷重-変位曲線

写真 3.1.4-22 木破

O-CJ-A-300 × 2 No.2

表 3.1.4-68 試験結果

破壞性状 : 木破

最大耐力 : 228.66 kN

初期剛性 : 160.40 kN/mm

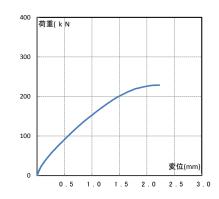


図 3.1.4-68 荷重-変位曲線

O-CJ-A-300 × 2 No.3

表 3.1.4-69 試験結果

破壊性状 : 木破

最大耐力 : 230.22 kN

初期剛性 : 135.28 kN /mm

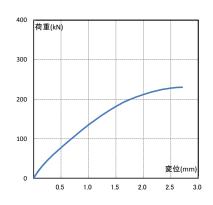


図 3.1.4-69 荷重-変位曲線

O-CJ-A-300 × 2 No.5

表 3.1.4-71 試験結果

破壞性状 : 木破

最大耐力 : 234.70 kN

初期剛性 : 173.15 kN /mm

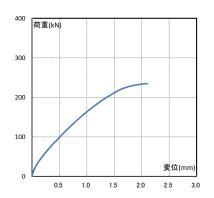


図 3.1.4-71 荷重-変位曲線

写真 3.1.4-23 木破

O-CJ-A-300 × 2 No.4

表 3.1.4-70 試験結果

破壊性状 : 木破

最大耐力 : 240.54 kN

初期剛性 : 155.50 kN /mm

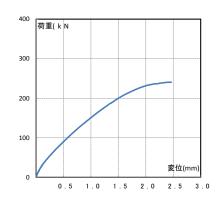


図 3.1.4-70 荷重-変位曲線

O-CJ-A-300 × 2 No.6

表 3.1.4-72 試験結果

破壞性状 : 木破

最大耐力 : 227.62 kN

|初期剛性 : 136.42 kN /mm

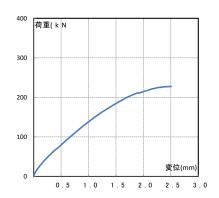


図 3.1.4-72 荷重-変位曲線

写真 3.1.4-24 木破

<u>O-CJ-A-300×4 シリーズ</u>

O-CJ-A-300 × 4 No.1

表 3.1.4-73 試験結果

破壞性状 : 木破

最大耐力 : 282.76 kN

初期剛性 : 162.23 kN /mm

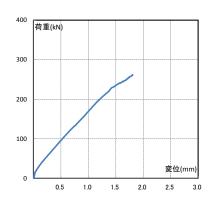


図 3.1.4-73 荷重-変位曲線

 $O-CJ-A-300 \times 4 \text{ No.}2$

表 3.1.4-74 試験結果

破壊性状 : 木破

最大耐力 : 267.92 kN

初期剛性 : 233.00 kN/mm

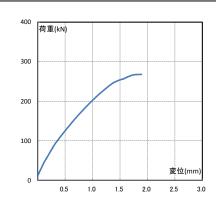


図 3.1.4-74 荷重-変位曲線

O-CJ-A-300 × 4 No.3

表 3.1.4-75 試験結果

破壊性状 : 木破

最大耐力 : 251.72 kN

初期剛性 : 177.51 kN /mm

O-CJ-A-300 × 4 No.4

表 3.1.4-76 試験結果

破壊性状 : 木破

最大耐力 : 256.50 kN

初期剛性 : 192.29 kN /mm

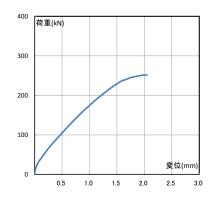


図 3.1.4-75 荷重-変位曲線

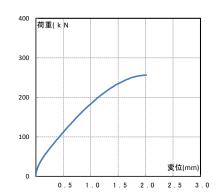


図 3.1.4-76 荷重-変位曲線

O-CJ-A-300 × 4 No.5

表 3.1.4-77 試験結果

破壞性状 : 木破

最大耐力 : 235.34 kN

初期剛性 : 178.81 kN/mm

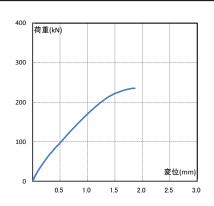


図 3.1.4-77 荷重-変位曲線

写真 3.1.4-25 木破

<u>O-CJ-B -300×1</u> シリーズ

O-CJ-B-300 × 1 No.1

表 3.1.4-79 試験結果

破壞性状 : 木破

最大耐力 : 123.35 kN

初期剛性 : 95.27 kN /mm

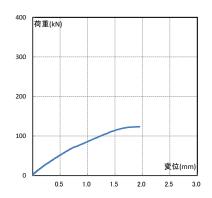


図 3.1.4-79 荷重-変位曲線

O-CJ-A-300 × 4 No.6

表 3.1.4-78 試験結果

破壊性状 : 木破

最大耐力 : 265.86 kN

初期剛性 : 193.08 kN /mm

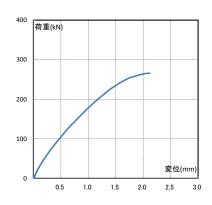


図 3.1.4-78 荷重-変位曲線

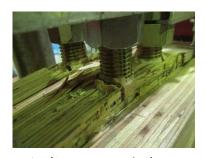


写真 3.1.4-26 木破

O-CJ-B-300 × 1 No.2

表 3.1.4-80 試験結果

破壞性状 : 木破

最大耐力 : 122.68 kN

初期剛性 : 109.81 kN /mm

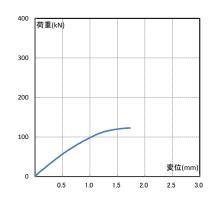


図 3.1.4-80 荷重-変位曲線

O-CJ-B-300 × 1 No.3

表 3.1.4-81 試験結果

破壞性状 : 木破

最大耐力 : 127.32 kN

初期剛性 : 126.98 kN /mm

図 3.1.4-81 荷重-変位曲線

O-CJ-B-300 × 1 No.5

表 3.1.4-83 試験結果

破壞性状 : 木破

最大耐力 : 119.60 kN

初期剛性 : 102.90 kN/mm

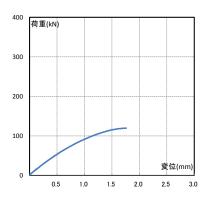


図 3.1.4-83 荷重-変位曲線



写真 3.1.4-27 木破

O-CJ-B-300 × 1 No.4

表 3.1.4-82 試験結果

破壞性状 : 木破

最大耐力 : 121.25 kN

初期剛性 : 136.73 kN /mm

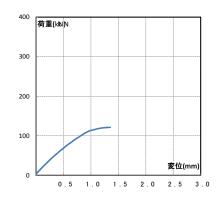


図 3.1.4-82 荷重-変位曲線

O-CJ-B-300 × 1 No.6

表 3.1.4-84 試験結果

破壞性状 : 木破

最大耐力 : 129.14 kN

初期剛性 : 102.94 kN /mm

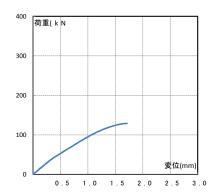


図 3.1.4-84 荷重-変位曲線

写真 3.1.4-28 木破

<u>O-CJ-B-300×2 シリーズ</u>

O-CJ-B-300 × 2 No.1

表 3.1.4-85 試験結果

破壞性状 : 木破

最大耐力 : 249.15 kN

初期剛性 : 228.42 kN /mm

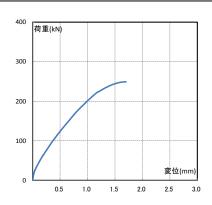


図 3.1.4-85 荷重-変位曲線

$O-CJ-B-300 \times 2 \text{ No.}2$

表 3.1.4-86 試験結果

破壊性状 : 木破

最大耐力 : 262.09 kN

初期剛性 : 178.56 kN/mm

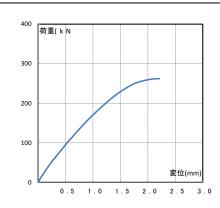


図 3.1.4-86 荷重-変位曲線

O-CJ-B-300 × 2 No.3

表 3.1.4-87 試験結果

破壊性状 : 木破

最大耐力 : 260.36 kN

初期剛性 : 228.68 kN /mm

O-CJ-B-300 × 2 No.4

表 3.1.4-88 試験結果

破壊性状 : 木破

最大耐力 : 256.21 kN

初期剛性 : 230.52 kN /mm

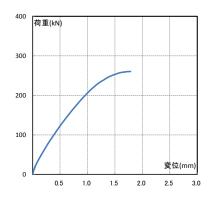


図 3.1.4-87 荷重-変位曲線

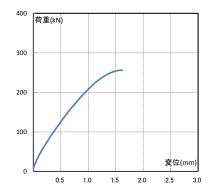


図 3.1.4-88 荷重-変位曲線

O-CJ-B-300 × 2 No.5

表 3.1.4-89 試験結果

破壞性状 : 木破

最大耐力 : 257.93 kN

初期剛性 : 232.31 kN/mm

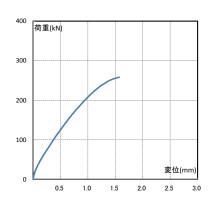


図 3.1.4-89 荷重-変位曲線

写真 3.1.4-29 木破

<u>O-CJ-B-300×4</u>シリーズ

O-CJ-B-300 × 4 No.1

表 3.1.4-91 試験結果

破壊性状 : 木破

最大耐力 : 288.88 kN

初期剛性 : 232.64 kN /mm

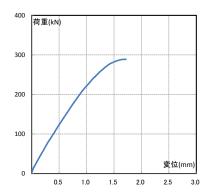


図 3.1.4-91 荷重-変位曲線

O-CJ-B-300 × 2 No.6

表 3.1.4-90 試験結果

破壞性状 : 木破

最大耐力 : 253.76 kN

初期剛性 : 175.06 kN /mm

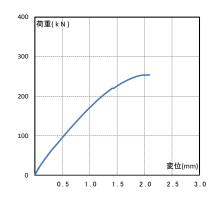


図 3.1.4-90 荷重-変位曲線

写真 3.1.4-30 木破

O-CJ-B-300 × 4 No.2

表 3.1.4-92 試験結果

破壊性状 : 木破

最大耐力 : 299.16 kN

初期剛性 : 236.17 kN /mm

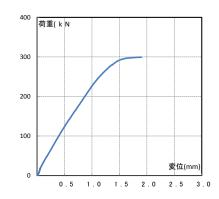


図 3.1.4-92 荷重-変位曲線

O-CJ-B-300 × 4 No.3

表 3.1.4-93 試験結果

破壊性状 : 木破

最大耐力 : 308.86 kN

初期剛性 : 297.12 kN /mm

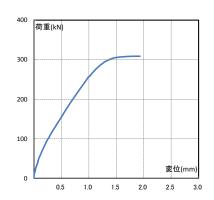


図 3.1.4-93 荷重-変位曲線

O-CJ-B-300 × 4 No.4

表 3.1.4-94 試験結果

破壊性状 : 木破

最大耐力 : 279.02 kN

初期剛性 : 307.99 kN /mm

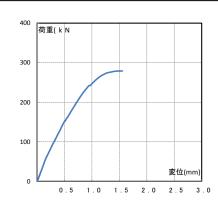


図 3.1.4-94 荷重-変位曲線

 $O-CJ-B-300 \times 4 \text{ No.5}$

表 3.1.4-95 試験結果

破壊性状 : 木破

最大耐力 : 285.88 kN

初期剛性 : 315.16 kN/mm

 $O-CJ-B-300 \times 4 \text{ No.}6$

表 3.1.4-96 試験結果

破壞性状 : 木破

最大耐力 : 282.62 kN

初期剛性 : 224.39 kN /mm



図 3.1.4-95 荷重-変位曲線

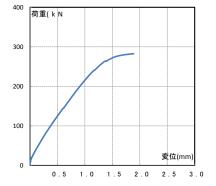


図 3.1.4-96 荷重-変位曲線

写真 3.1.4-31 木破

写真 3.1.4-32 木破

3.1.5 まとめ

表 3.1.5-1 \sim 3.1.5-2 に試験結果の特性値をまとめたものを示す。短期基準耐力は最大耐力の 平均値の 2/3 の値に、ばらつき係数を乗じた値とした。

表 3.1.5-1 特性值一覧(繊維平行方向)

樹種			埋め込み			D.,		カロ 世界	PILINH	短期基準
	繊維方向	種類	長さ	金物本数	No.	Pmax (kN)		初期剛性 (kN/mm)		耐力T。
			(mm)		1			69.77	·	(kN)
					2	32.56 35.65	36.47	123.52		
					3	40.96		121.66	440.00	40.00
			100		4	32.62		165.42	148.68	18.88
					5	39.40		166.48		
				ļ	6	37.60		245.22		
			200	1本	2	67.70 69.41	74.00	307.73 170.70		
					3	70.17		121.56		45.00
					4	72.43	71.02	120.76	232.12	45.38
					5	74.15		556.13		
					6	72.27		115.84		
					1	107.81		210.78		
					3	113.41 101.99		130.92 524.28		
		A種			4	106.36	107.02	計測不能	227.00	65.40
					5	104.76		140.44		120.50
	平行				6	107.76		128.57		
					1	199.18		477.36		
			300	2本	3	217.97 197.24	206.54	625.41 501.46	578.48	120.50
					4	208.88		810.90		
					5	220.80		545.62		
					6	195.16		510.13		
				4本	1	313.66	297.77	計測不能	884.27	
					2	268.56		898.61		
					<u>3</u>	287.10 329.18		657.48 783.76		153.72
					5	324.92		937.07		
LVL					6	263.22		1144.43		<u> </u>
LVL		B種	100		1	34.38	36.98	147.34		
					3	31.77 40.96		163.02 292.57		
					4	40.96		147.50	223.89	19.08
					5	37.72		188.60		
					6	36.39		404.33		
					1	72.76		352.06		
			300	1本	3	73.55	73.14	277.15	248.74	44.06
					4	67.97 78.71		192.50 212.14		
					5	65.77		226.79		
					6	80.07		231.82		
					1	101.08	102.66	203.76	297.58	59.10
					3	112.23 102.47		275.86		
					4	106.66		516.85 316.81		
					5	97.20		270.46		
					6	96.33		201.72		
					1	184.06	186.14	446.48		
				2本	2	178.57		432.02		
					3 4	187.84 201.06		521.78 532.13	507.92	111.05
					5	178.22		538.35		
					6	187.11		576.77		
				4本	1	312.28	313.04	807.62		
					2	340.36		551.94		
					3	333.72		654.55	674.90	173.79
					<u>4</u> 5	302.12 311.62		619.10 559.80		
					6	278.16		856.38		

表 3.1.5-2 特性值一覧 (繊維直交方向)

樹種	繊維方向	種類	埋め込み 長さ (mm)	金物本数	No.	Pmax (kN)		初期剛性 (kN/mm)		短期基準 耐力T ₀ (kN)
					1	112.28		115.78		67.10
				1本	2	102.96	109.78	99.59	105.09	
					3	114.02		97.17		
					4	110.24		107.06		
					5	111.22		94.83		
					6	107.95		116.12		
			- 300		1	223.98	230.95	148.44	151.53	144.85
		A種		2本	2	228.66		160.40		
					3	230.22		135.28		
					4	240.54		155.50		
					5	234.70		173.15		
					6	227.62		136.42		
					1	282.76		162.23	189.49	148.19
					2	267.92		233.00		
				4本	3	251.72	260.02	177.51		
					4	256.50		192.29		
					5	235.34		178.81		
LVL	直交	B種			<u>6</u> 1	265.86 123.35	123.89	193.08	112.44	76.92
					2	123.33		95.27 109.81		
				1本	3	127.32		126.98		
					4	121.25		136.73		
					5	119.60		102.90		
					6	129.14		102.94		
					1	249.15	256.58	228.42	212.26	163.76
				•	2	262.09		178.56		
				2本	3	260.36		228.68		
					4	256.21		230.52		
					5	257.93		232.31		
					6	253.76		175.06		
				4本	1	288.88		232.64	268.91	176.35
					2	299.16	290.74	236.17		
					3	308.86		297.12		
					4	279.02		307.99		
					5	285.88		315.16		
					6	282.62		224.39		

初期剛性

試験により得られた初期剛性及び各シリーズごとの平均値を図 $3.1.5-1 \sim 3.1.5-4$ に示す。初期剛性は、それぞれの荷重一変位曲線における最大荷重の 0.1 倍と 0.4 倍の点を結んだ直線の傾きとした。

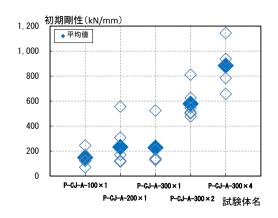


図 3.1.5-1 初期剛性 (A 種、繊維平行方向)

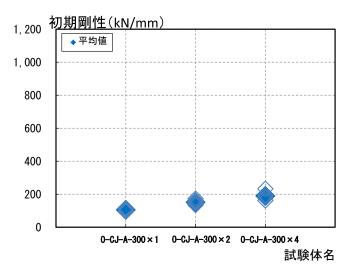


図 3.1.5-2 初期剛性 (A種、繊維直交方向)

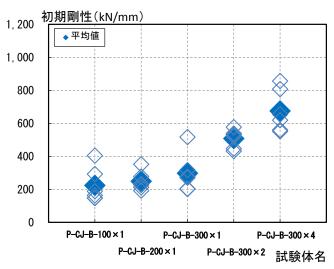


図 3.1.5-3 初期剛性 (B種、繊維平行方向)

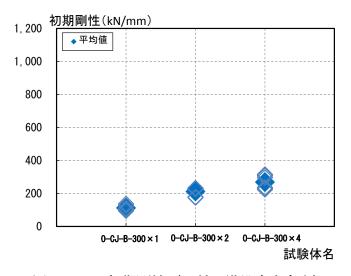


図 3.1.5-4 初期剛性 (B種、繊維直交方向)

最大耐力及び短期基準耐力

各シリーズの最大耐力および短期基準耐力を図 3.1.5-5~3.1.5-8 に示す。短期基準耐力は、最大耐力の平均値の 2/3 の値にばらつき係数を乗じた値とした

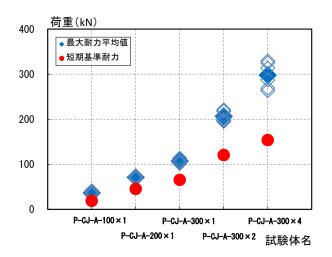


図 3.1.5-5 最大耐力及び短期基準耐力(A種、繊維平行方向)

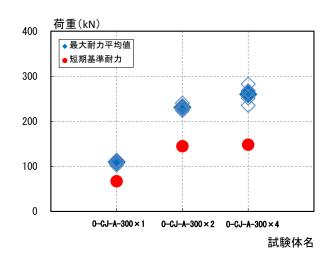


図 3.1.5-6 最大耐力及び短期基準耐力(A種、繊維直交方向)

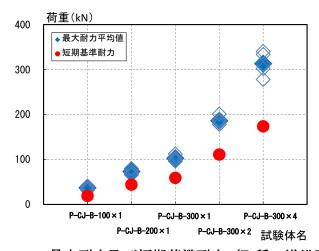


図 3.1.5-7 最大耐力及び短期基準耐力(B種、繊維平行方向)

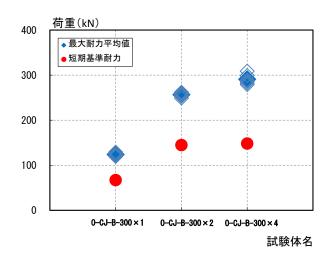


図 3.1.5-8 最大耐力及び短期基準耐力(B種、繊維直交方向)

A種とB種の比較

初期剛性、最大耐力および短期基準耐力のA種とB種の比較を図3.1.5-9~3.1.5-14に示す。 短期基準耐力は、最大耐力の平均値の2/3の値にばらつき係数を乗じた値とした。

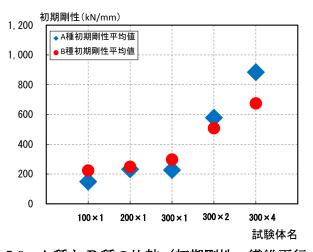


図 3.1.5-9 A種とB種の比較(初期剛性、繊維平行方向)

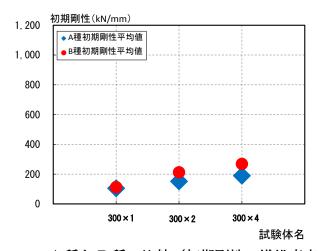


図 3.1.5-10 A種とB種の比較(初期剛性、繊維直交方向)

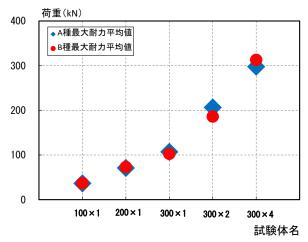


図 3.1.5-11 A種と B種の比較(最大耐力、繊維平行方向)

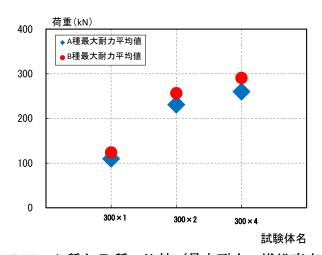


図 3.1.5-12 A種と B種の比較 (最大耐力、繊維直交方向)

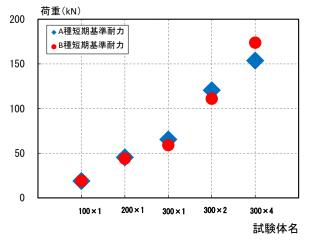


図 3.1.5-13 A種とB種の比較(短期基準耐力、繊維平行方向)

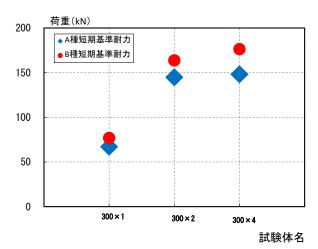


図 3.1.5-14 A種とB種の比較(短期基準耐力、繊維直交方向)

3.2 LSB 接合部試験

3.2.1 目的

スギ LVL を使用したラグスクリューボルト接合(HLS-20、HLS-27)の引抜きに対する耐力及び剛性を評価することを目的に引抜き実験を行った。

3.2.2 試験

3.2.2.1 試験体

(1)ラグスクリューボルトの品質及び形状

①材質:SWCH45K

②形状及び寸法:図3.2.2.1-1に示す。

(2)LVL の仕様

①樹種・等級・構成

試験体名	樹種	荷重方向	構成・強度等級
A-1			
A-2		木口方向	I 1771 A 3ff
A-3			LVL A種
A-4		積層方向	
B-1			
B-2		木口方向	IVI DÆ
B-3	Li		LVL B種
B-4	スギ	積層方向	
C-1		+ p + +	
C-2		木口方向	LVL A種
C-3		積層方向	
D-1		***	
D-2		木口方向	LVL B種
D-3		積層方向	

②試験体の形状

荷重方向(荷重と木材繊維のなす角度)を、木口方向と、積層方向の2種類とした。 試験体の概要を図3.2.2.1-2~図3.2.2.1-4 に、形状及び寸法を図3.2.2.1-5~図3.2.2.1-18 に示す。 なお、LSB は HLS-20(外径 ϕ 25.4、谷径 ϕ 20.4)及び HLS-27(外径 ϕ 35、谷径 ϕ 26.9)の2 種類とし、LSB の先穴は ϕ 21(HLS-20)、 ϕ 27.5(HLS-27)とした。

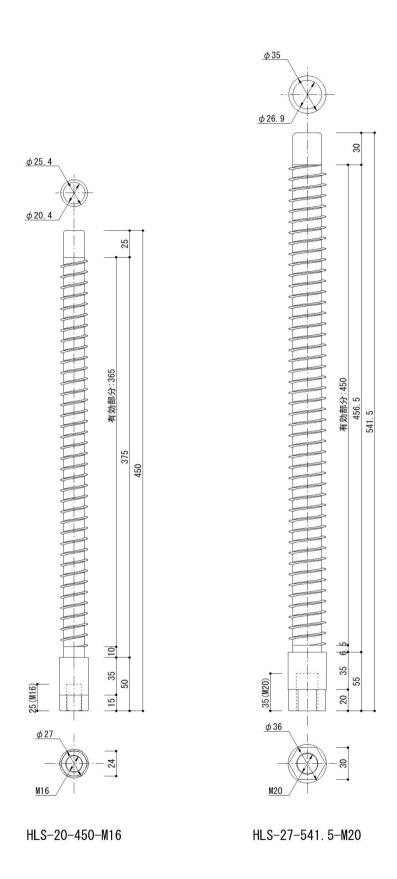


図 3.2.2.1-1 測定用 LSB の形状及び寸法

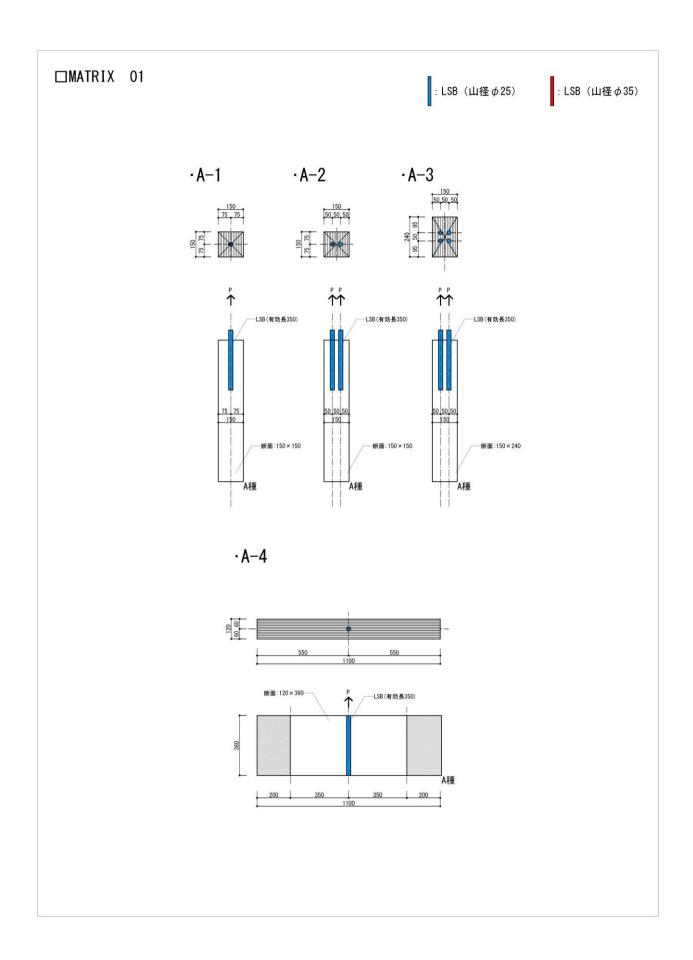


図 3.2.2.1-2 試験体概要 1

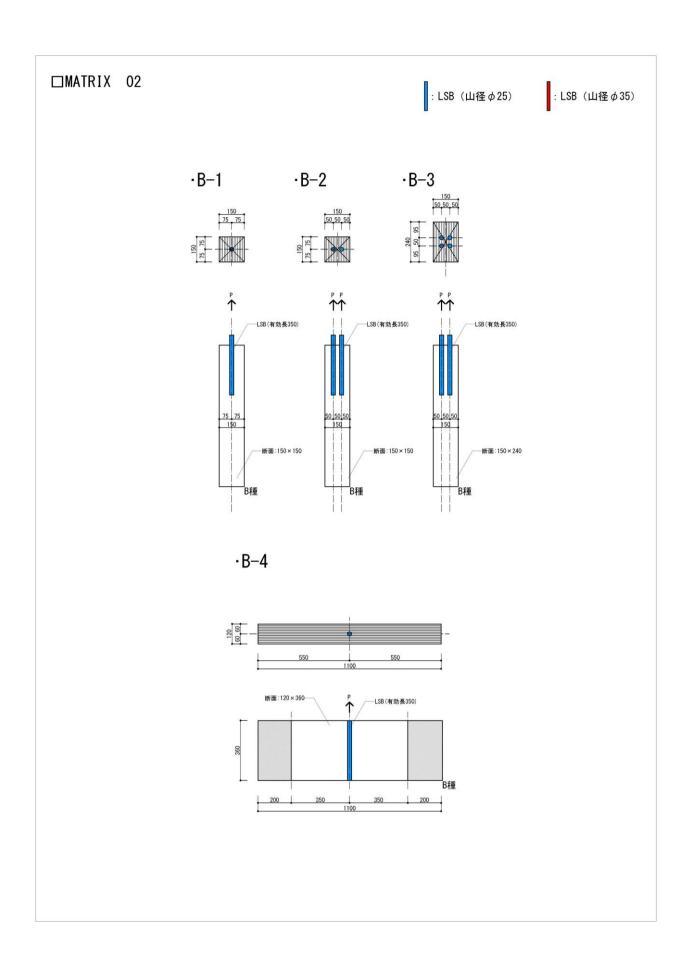


図 3.2.2.1-3 試験体概要 2

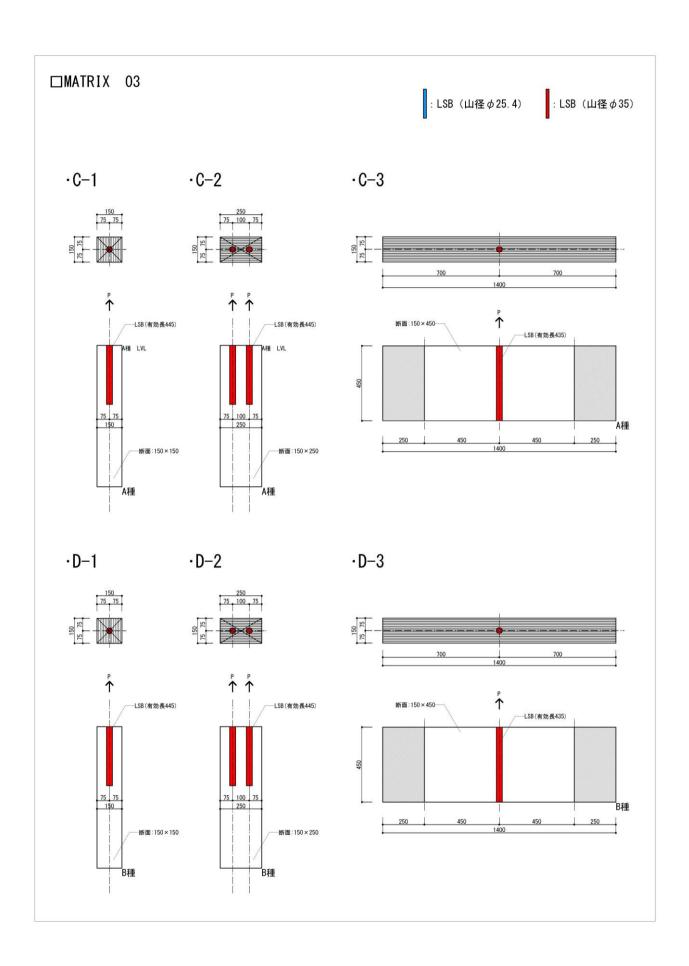


図 3.2.2.1-4 試験体概要 3

試験体 : スギLVL A種 (150×150) 測定用LSB: HLS-20(山径 φ 25.4、谷径 φ 20.4、有効長350)

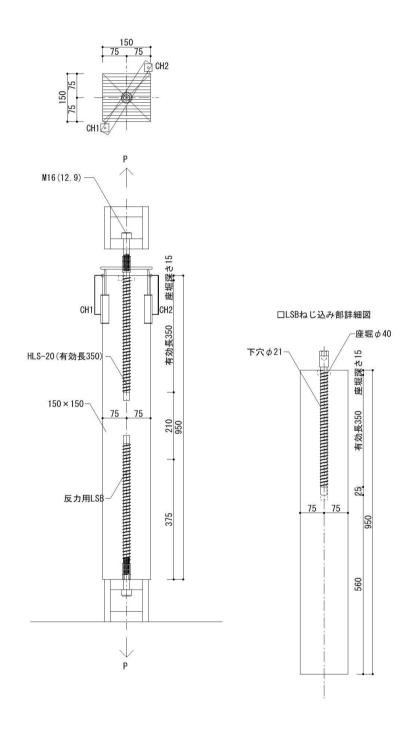


図 3.2.2.1-5 試験体の形状及び寸法 (A-1)

試験体 : スギLVL A種 (150×150) 測定用LSB: HLS-20(山径 φ 25.4、谷径 φ 20.4、有効長350)

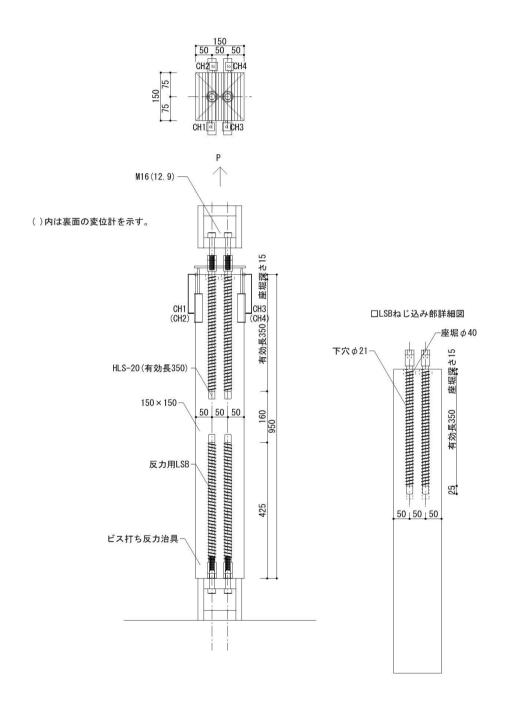


図 3.2.2.1-6 試験体の形状及び寸法 (A-2)

試験体 : スギLVL A種 (150×240) 測定用LSB: HLS-20(山径 φ 25.4、谷径 φ 20.4、有効長350)

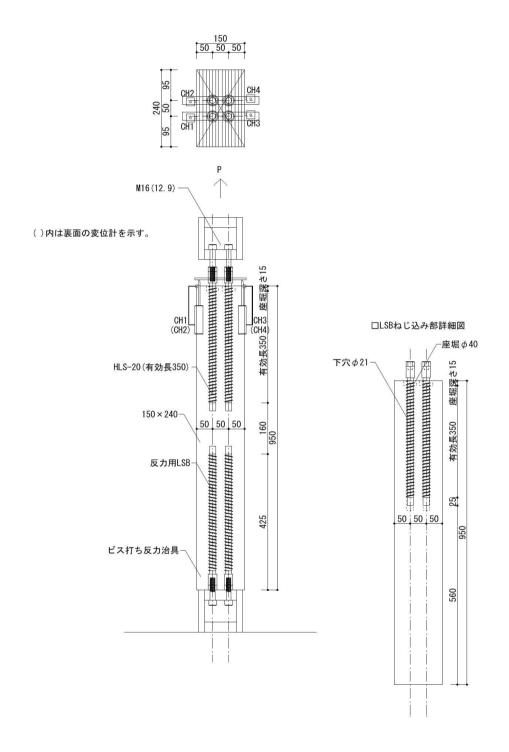
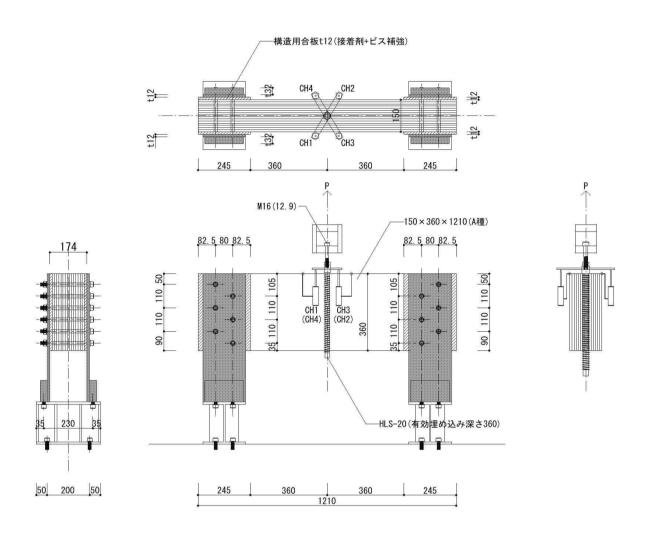



図 3.2.2.1-7 試験体の形状及び寸法 (A-3)

試験体 : スギLVL A種 (150×360) 測定用LSB: HLS-20(山径 φ 25.4、谷径 φ 20.4、有効長360)

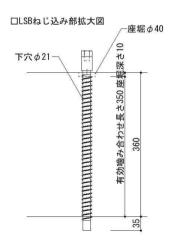


図 3.2.2.1-8 試験体の形状及び寸法 (A-4)

試験体 : スギLVL B種 (150×150) 測定用LSB: HLS-20(山径 φ 25.4、谷径 φ 20.4、有効長350)

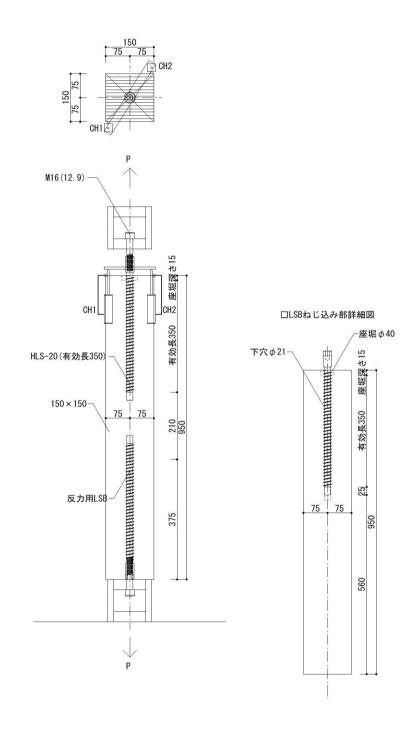


図 3.2.2.1-9 試験体の形状及び寸法 (B-1)

試験体 : スギLVL B種 (150×150) 測定用LSB: HLS-20(山径 φ 25.4、谷径 φ 20.4、有効長350)

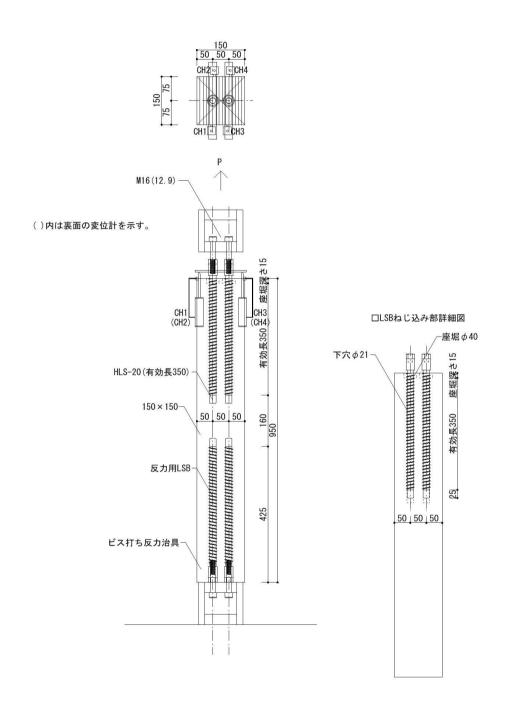


図 3.2.2.1-10 試験体の形状及び寸法 (B-2)

試験体 : スギLVL B種 (150×240) 測定用LSB: HLS-20(山径 φ 25.4、谷径 φ 20.4、有効長350)

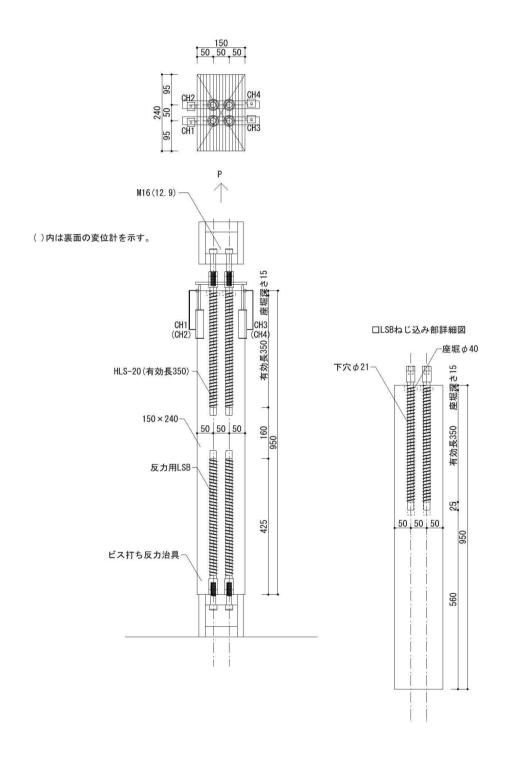
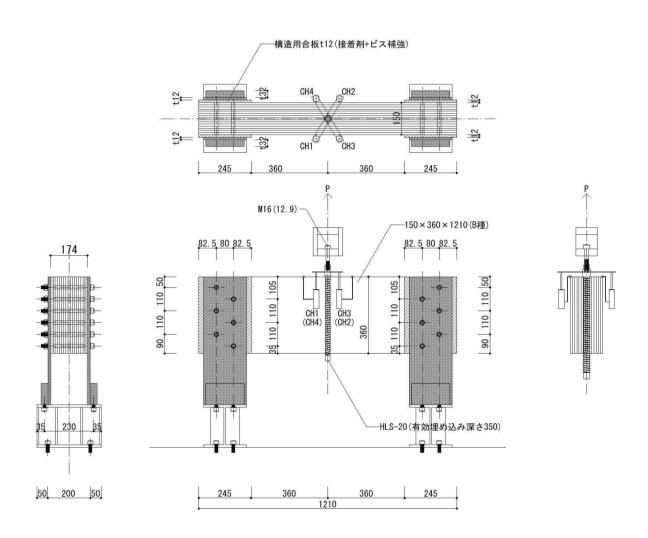



図 3.2.2.1-11 試験体の形状及び寸法 (B-3)

試験体 : スギLVL B種 (150×360) 測定用LSB: HLS-20(山径 φ 25.4、谷径 φ 20.4、有効長350)

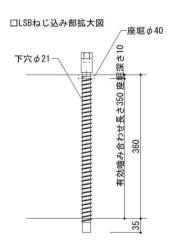


図 3.2.2.1-12 試験体の形状及び寸法 (B-4)

試験体 : スギLVL A種 (150×150) 測定用LSB: HLS-27(山径 ϕ 35、谷径 ϕ 26.9、有効長445)

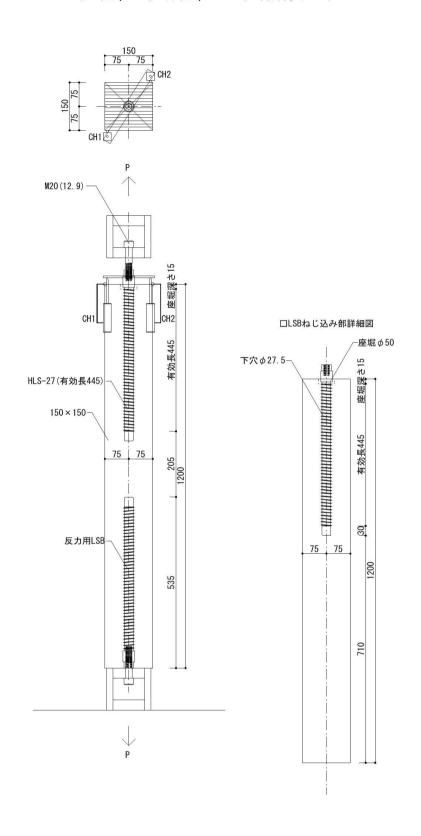
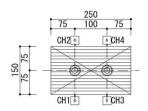



図 3.2.2.1-13 試験体の形状及び寸法 (C-1)

試験体 : スギLVL A種 (150×250) 測定用LSB: HLS-27(山径 ϕ 35、谷径 ϕ 26. 9、有効長445)

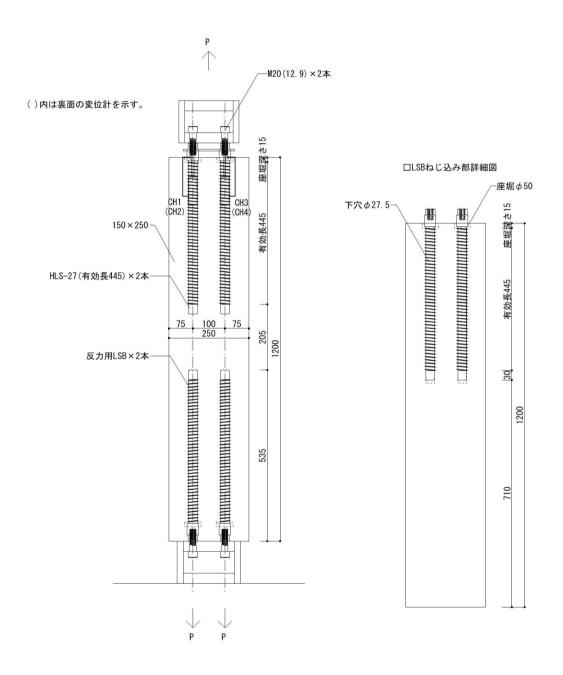
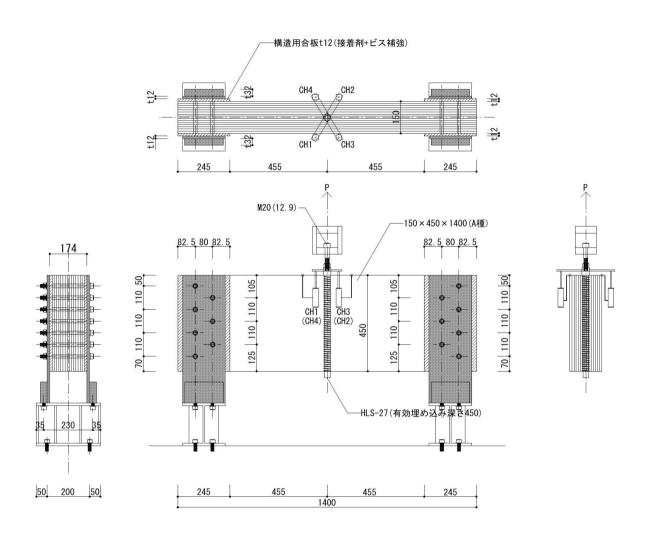



図 3.2.2.1-14 試験体の形状及び寸法 (C-2)

試験体 : スギLVL A種 (150×450) 測定用LSB: HLS-27(山径 ϕ 35、谷径 ϕ 26.9、有効長450)

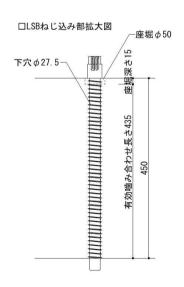


図 3.2.2.1-15 試験体の形状及び寸法 (C-3)

試験体 : スギLVL B種 (150×150) 測定用LSB: HLS-27(山径 ϕ 35、谷径 ϕ 26. 9、有効長445)

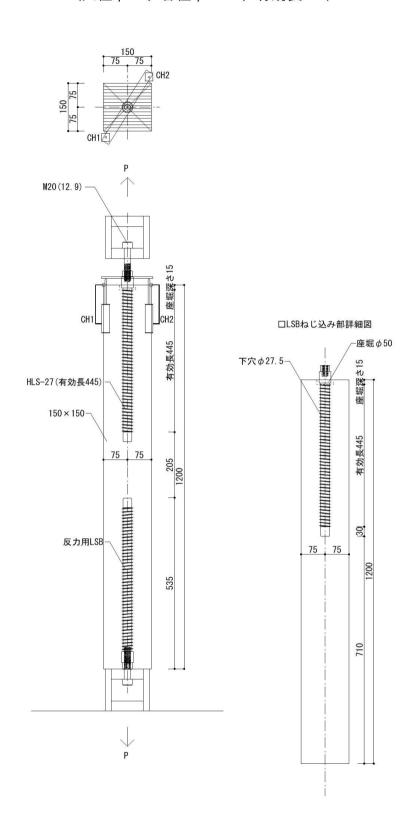
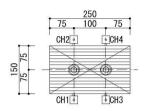



図 3.2.2.1-16 試験体の形状及び寸法 (D-1)

試験体 : スギLVL B種 (150×250) 測定用LSB: HLS-27(山径 φ 35、谷径 φ 26.9、有効長445)

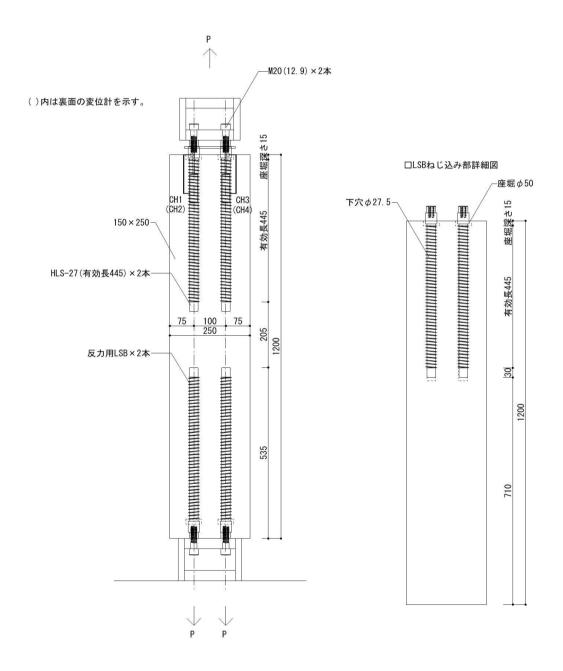
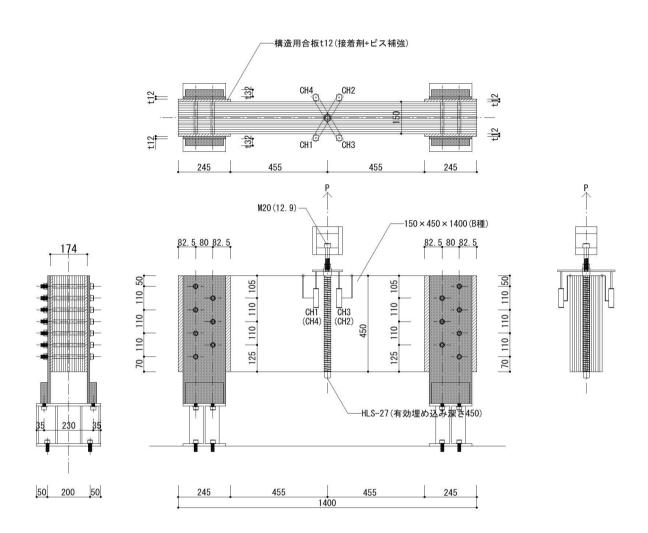



図 3.2.2.1-17 試験体の形状及び寸法 (D-2)

試験体:スギLVL B種 (150×450) 測定用LSB:HLS-27(山径 φ 35、谷径 φ 26.9、有効長450)

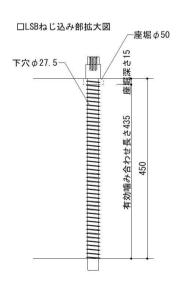


図 3.2.2.1-18 試験体の形状及び寸法 (D-3)

(3)試験体の仕様

試験体の仕様を表 3.2.2.1-1 に示す。

表 3.2.2.1-1 試験体の仕様

試験体名	樹種	荷重方向	LSB名称	埋め込み 長さ(mm)	有効埋め	試験体数	特記
A-1				₹ (mm) 390	込み長さ(mm) 350	6	LSB 1本
		Landa Laria				~	
A-2		木口方向		390	350	6	LSB 2本
A-3			HLS-20-450-M16	390	350	6	LSB 4本
A-4		積層方向		360	350	6	LSB 1本
B-1			HLS-20-450-W116	390	350	6	LSB 1本
B-2		木口方向		390 350		6	LSB 2本
B-3	コギ			390	350	6	LSB 4本
B-4	スギ	積層方向		360	350	6	LSB 1本
C-1		木口方向		490	445	6	LSB 1本
C-2		アログド		490	445	6	LSB 2本
C-3		積層方向	HI C-97-541 5-M90	490	445	6	LSB 1本
D-1		木口方向	HLS-27-541.5-M20	490	445	6	LSB 1本
D-2		かロカ門		450	435	6	LSB 2本
D-3		積層方向		450	435	6	LSB 1本

3.2.2.2 試験方法

1000kN 万能試験機を用い、繰り返し加力 (2mm/min) により引抜き試験を行った。写真 3.2.2.2-1 ~写真 3.2.2.2-2 に木口方向、積層方向の代表的な試験状況を示す。また、加力及び計測に用いた装置を表 3.2.2.2-1 に示す。繰り返し加力スケジュールは、予備試験(単調加力)から得た降伏変位 δ y の固定数列方式とする。すなわち、 δ y の 1/2、1、2、4、6、8、12、16 倍の順で繰り返し加力を行った。加力スケジュールを表 3.2.2.2-2 に示す。

表 3.2.2.2-1 加力装置及び計測装置

装置種類	名称
試験機	1000kN 万能試験機
データロガー	TDS-303(東京測器研究所)
変位計	CDP-25 容量 25 mm,感度:200 µ/mm(東京測器研究所)

表 3.2.2.2-2 加力スケジュール及び破壊状況

			3.2.2.2-2	74H24	<u> </u>				
=-1: (5.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	試験体	1.100		20			20	100	1.00
試験体	No.	1/28y	δу	2δу	4δy	6бу	8δy	12δy	16δу
		0.10	0.20	0.40	0.81	1.22	1.62	2.44	3.25
	No.1	0	0	0	0	0	0		
	No.2	0	0	0	0	0	0		
A-1	No.3	0	0	0	0	0			
	No.4	0	0	0	0	0			
	No.5	0	0	0	0				
	No.6	0	\circ	\circ	\circ	0	\circ	\circ	
	=+ F ◇ / +				変位〔	[mm]			
試験体	試験体	1/28y	δу	$2\delta y$	$4\delta y$	6δу	8бу	128y	16δу
	No.	0.21	0.42	0.83	1.66	2.49	3.32	4.99	6.65
	No.1	0	0	0	0				
	No.2	0		0	0	0			
	No.3	0	0	0	0				
A-2	No.4	0	0	0					
	No.5	0	0	0					
	No.6	0	0	0					
						[mm]			
試験体	試験体	1/2δy	бу	28у	4δy	6бу	8бу	12бу	16δy
	No.	0.14	0.28	0.56	1.12	1.68	2.24	3.36	4.48
	No.1	0	0	0			,		
	No.2	0	0	0					
	No.3	0	0	0					
A-3	No.4	0	0	0					
	No.5	0	0	0					
	No.6	0	0	0					
				<u> </u>	 変位〔	[mm]	<u>l</u>	l	
試験体	試験体	1/2δy	δу	2δу	4δy	6δу	8δу	12δy	16δy
DANA LA	No.		-		_	_	_	_	
	NT. 1	0.46	0.92	1.84	3.68	5.52	7.36	11.05	14.73
	No.1	0	0	0	0	0	0		
	No.2	0	0	0	0	0	0		
A-4	No.3	0	0	0	0	0	0		
	No.4	0	0	0	0	0	0		
	No.5	0	0	0	0	0	0		
	No.6	0	\circ	\circ	0	\circ	0		

	- 5.774.41				変位〔	[mm]			
試験体	試験体	1/2δy	δу	28у	4δy	6δу	8δу	128y	16δy
	No.	0.17	0.34	0.68	1.36	2.04	2.72	4.09	5.45
	No.1	0	0	0	0				
	No.2	0	0	0	0	0			
B-1	No.3	\circ	\circ	\circ	\circ	\circ			
БТ	No.4	0	\circ	\circ	0	0			
	No.5	0	0	0	0	0			
	No.6	\circ	\circ	\circ	\circ	\circ			
	=+ F ◇ / +				変位〔	[mm]			
試験体	試験体 No.	1/2δy	δу	2δу	4δy	6δу	8бу	128у	$16\delta y$
	NO.	0.13	0.26	0.52	1.05	1.57	2.10	3.15	4.20
	No.1	0	0	0	0	0	0	0	
	No.2	0	0	0	0	0	\circ	0	
D. c	No.3	\circ	0	0	0	0	0	0	
B-2	No.4	0	0	0	0	0	\circ	0	
	No.5	0	0	0	0	0	0	0	
	No.6	0	0	0	0	0	0	0	
	= 5 5 6 4 4				変位〔	[mm]			
試験体	試験体	1/2δy	δу	28у	4δy	68у	8бу	128y	16δy
	No.	0.11	0.22	0.44	0.88	1.32	1.76	2.64	3.52
	No.1	0	0	0	0	0			
	No.2	0	0	0	0	0			
D.O.	No.3	0	0	0	0	0			
B-3	No.4	0	0	0	0	0			
	No.5	0	0	0	0	0			
	No.6	0	0	0	0	0	0		
	= 5 5 6 4 4				変位〔	[mm]			
試験体	試験体	1/2δy	δу	28у	4δy	68у	8бу	128y	16δy
	No.	0.46	0.93	1.87	3.74	5.61	7.49	11.23	14.98
	No.1	0	0	0	0	0	0		
	No.2	0	0	0	0	0	0		
.	No.3	0	0	0	0	0	\circ		
B-4	No.4	0	0	0	0	0	\circ		
	No.5	0	0	0	0	0			
	No.6	0	0	0	0	0	0		

					変位[[mm]			
試験体	試験体	1/28y	бу	2бу	4бу	6бу	8бу	12бу	16δy
	No.	0.05	0.10	0.21	0.42	0.64	0.85	1.27	1.70
	No.1	0	0	0	0	0			
	No.2	0	0	0					
C-1	No.3	0	0	0	0	0			
C-1	No.4	0	0	0	0	0	0	0	
	No.5	\circ	0	0	0	0	\circ		
	No.6	\circ	0	0	0	0			
	=4 54 14				変位[(mm)			
試験体	試験体	1/28y	δу	2бу	4δy	6δу	8бу	12δy	16δу
	No.	0.15	0.31	0.62	1.24	1.86	2.48	3.72	4.97
	No.1	0	0	0					
	No.2	0	0	0	0	0	\circ		
G o	No.3	0	0	0	0	0	\circ		
C-2	No.4	0	0	0	0	0			
	No.5	0	0	0	0	0	0	0	\circ
	No.6	0	0	0	0	0	0		
	=4 50 /4				変位[(mm)			
試験体	試験体 No.	1/28y	δу	2бу	4δy	6δу	8бу	12бу	16δy
	NO.	0.42	0.84	1.69	3.39	5.09	6.79	10.18	13.57
	No.1	0	0	0	0	0	0		
	No.2	0	0	0	0	0	0		
C a	No.3	0	0	0	0	0			
C-3	No.4	0	0	0	0	0	0		
	No.5	0	0	0	0	0	0		
	No.6	0	0	0	0	0			
	=+ F ◇ /+				変位[[mm]			
試験体	試験体	1/28y	δу	2бу	4δy	6δу	8бу	12бу	168у
	No.	0.16	0.32	0.64	1.28	1.91	2.55	3.82	5.10
	No.1	0	0	0	0	0			
	No.2	0	0	0	0	0	0		
D 1	No.3	0	0	0	0	0	0		
D-1	No.4	0	0	0	0	0	0		
	No.5	0	0	0	0				
	No.6	0	0	0					

	= 1: 5				変位[[mm]			
試験体	試験体 No.	1/28y	δу	2бу	4δy	68у	8бу	12бу	16δу
試験体 D-2	NO.	0.26	0.52	1.05	2.11	3.17	4.22	6.34	8.45
	No.1	0	0	0					
	No.2	0	0	0					
D-9	No.3	\circ	0	0					
D-2	No.4	0	0	0					
	No.5	0	0	0	0				
	No.6	\circ	\circ	\circ					
	=± F ◇ /±				変位[[mm]			
試験体	試験体	1 100							
	Ma	1/2δy	δу	2δу	$4\delta y$	6бу	8бу	12δy	16δy
	No.	0.40	δy 0.80	28y 1.61	4δy 3.23	6δy 4.84	8δy 6.46	128y 9.69	16δy 12.92
	No. No.1		-						
		0.40	0.80	1.61	3.23	4.84			
D. 2	No.1	0.40	0.80	1.61	3.23	4.84			
D-3	No.1 No.2	0.40	0.80	1.61	3.23	4.84			
D-3	No.1 No.2 No.3	0.40	0.80	1.61	3.23	4.84			

写真 3.2.2.2-1 試験状況(木口方向)

写真 3.2.2.2-2 試験状況(積層方向)

3.2.3. 試験結果

表 3.2.3-1a~表 3.2.3-14b に試験結果を、図 3.2.3-1~図 3.2.3-14 に試験仕様毎の荷重-変形曲線(繰り返し荷重)を、図 3.2.3-15~図 3.2.3-28 に試験仕様毎の荷重-変形曲線(包絡線)、写真 3.2.3-1~写真 3.2.3-7 に代表的な破壊状況を示す。

ここで、各結果は、以下の設定で整理した。

剛性の計算は、荷重-変位曲線から 0.1Pmax-0.4Pmax の範囲において弾性域を判断し、剛性直線を設定した。

②δは次式を用いて算出した。

$$\begin{split} & \delta = \frac{CH1 + CH2}{2} \quad (試験体: A-1, B-1, C-1, D-1) \\ & \delta = \frac{CH1 + CH2 + CH3 + CH4}{4} \qquad (試験体: A-4, B-4, C-3, D-3) \\ & \delta = \frac{CH1 + CH2 + CH3 + CH4}{4} - \delta_{\rm t} \qquad (試験体: A-2 \sim A-3, B-2 \sim B-3, C-2, D-2) \end{split}$$

δt: 試験体の引張用ボルトの伸び

- ③包絡線は、独立行政法人森林総合研究所作成の pickpoint (荷重変形曲線の特徴点抽出の自動化ツール) を利用し求めた。参考値として短期基準引張耐力(5%下限値)、最大荷重(5%下限値)、基準剛性(50%下限値)の算出も行った。
 - ※試験体 C-2、D-2 については、計測データの不具合により、短期基準引張耐力を 2/3Pmax の 5%下限値にて評価を行った。

表 3.2.3-1a 繊維平行方向引張試験結果 (A-1)

			No1	No2	No3	No4	No5	No6	平均	標準偏差
最大荷重	Pmax	(kN)	70.95	71.95	70.55	73.13	76.65	66.60	71.64	3.30
最大荷重の 2/3	2/3·Pmax	(kN)	47.30	47.97	47.03	48.75	51.10	44.40	47.76	2.20
最大荷重時の変位	δmax	(mm)	0.80	0.72	0.55	1.01	0.80	1.12	0.83	0.20
降伏荷重	Py	(kN)	40.07	37.13	36.35	40.36	43.09	35.69	38.78	2.86
降伏変位	δу	(mm)	0.23	0.20	0.17	0.23	0.22	0.19	0.21	0.02
終局荷重	Pu	(kN)	64.87	63.43	63.87	68.53	70.69	60.97	65.39	3.58
終局変位	δυ	(mm)	2.12	2.07	1.19	1.60	1.34	2.80	1.85	0.60
初期剛性	K	(kN/mm)	171.15	187.59	203.20	181.21	199.30	187.85	188.38	11.73
降伏点回転角	δν	(mm)	0.37	0.34	0.30	0.39	0.37	0.32	0.35	0.03
塑性率	μ		5.71	6.00	3.99	4.11	3.63	8.74	5.37	1.92
構造特性係数	Ds		0.31	0.30	0.38	0.37	0.40	0.25	0.33	0.06
0.1 · Pmax		(kN)	7.10	7.20	7.06	7.31	7.67	6.66	7.16	0.33
0.1・Pmax 時の変位		(mm)	0.02	0.03	0.02	0.02	0.02	0.01	0.02	0.01
0.4 · Pmax		(kN)	28.38	28.78	28.22	29.25	30.66	26.64	28.66	1.32
0.4・Pmax 時の変位		(mm)	0.15	0.14	0.12	0.14	0.14	0.11	0.13	0.01
0.9 · Pmax		(kN)	63.86	64.76	63.50	65.81	68.99	59.94	64.47	2.97
0.9・Pmax 時の変位		(mm)	0.49	0.46	0.37	0.58	0.49	0.58	0.50	0.08
特定変位時の荷重 P	1mm 時の P	(kN)	69.51	67.17	61.73	73.12	71.63	65.80	68.16	4.16
	2mm 時の P	(kN)	58.74	58.49	52.39	ı	l	61.50	l	_
	3mm 時の P	(kN)	_	-	-	_	_	52.39	_	_
	5mm 時の P	(kN)	_	-	-	-	-	-	-	_
	7mm 時の P	(kN)	_	-	-	-	-	-	-	_
	10mm 時の P	(kN)	_	ı	I	ı	ı	ı	ı	_
	20mm 時の P	(kN)	_	ı	I	ı	ı	ı	ı	_
	30mm 時の P	(kN)	_	-	-	_	_	-	_	_

表 3.2.3-1b 最大荷重(95%下限値)·短期基準引張耐力(95%下限値)·基準剛性(50%下限値)の算定

	Pmax	Ру	2/3·Pmax	初期剛性 K	Pu×(0.2/Ds) (参考)	3mm 時の P (参考)
No1 試験体	70.95	40.07	47.30	171.15	41.90	_
No2 試験体	71.95	37.13	47.97	187.59	42.08	_
No3 試験体	70.55	36.35	47.03	203.20	33.77	_
No4 試験体	73.13	40.36	48.75	181.21	36.85	_
No5 試験体	76.65	43.09	51.10	199.30	35.35	_
No6 試験体	66.60	35.69	44.40	187.85	49.51	52.39
試験体数 n	6	6	6	6	6	6
試験体数 n による係数 k	2.336	2.336	2.336	0.297	2.336	2.336
平均値	71.6	38.8	47.8	188.4	39.91	_
標準偏差	3.30	2.86	2.20	11.73	5.81	_
変動係数 CV	0.046	0.074	0.046	0.062	0.146	
ばらつき係数	0.89	0.83	0.89	0.98	0.66	_
基準最大耐力 Pmaxo	63.93	_	_	_	_	_
短期基準引張耐力 Po	_	32.10	42.62		26.34	
基準剛性 K ₀	_	_	_	184.90	_	_

表 3.2.3-2a 繊維平行方向引張試験結果 (A-2)

			No1	No2	No3	No4	No5	No6	平均	標準偏差
最大荷重	Pmax	(kN)	147.40	150.00	146.67	159.90	155.42	162.07	153.58	6.54
最大荷重の 2/3	2/3·Pmax	(kN)	98.27	100.00	97.78	106.60	103.61	108.05	102.38	4.36
最大荷重時の変位	δmax	(mm)	0.99	0.94	1.23	1.26	1.29	1.03	1.13	0.15
降伏荷重	Py	(kN)	80.36	82.86	81.35	114.70	82.99	80.16	87.07	13.59
降伏変位	δу	(mm)	0.33	0.39	0.37	0.57	0.39	0.33	0.40	0.09
終局荷重	Pu	(kN)	132.43	136.68	128.50	160.29	150.51	158.69	144.52	13.78
終局変位	δυ	(mm)	2.32	2.36	4.22	1.26	1.38	2.29	2.31	1.06
初期剛性	K	(kN/mm)	224.58	189.52	198.31	182.40	187.49	212.47	199.13	16.33
降伏点回転角	$\delta \mathbf{v}$	(mm)	0.33	0.39	0.37	0.57	0.39	0.33	0.40	0.09
塑性率	μ		4.31	3.65	7.17	1.59	1.94	3.49	3.69	2.00
構造特性係数	Ds		0.36	0.40	0.27	0.68	0.59	0.41	0.45	0.15
0.1 · Pmax		(kN)	14.74	15.00	14.67	15.99	15.54	16.21	15.36	0.65
0.1・Pmax 時の変位		(mm)	0.01	0.02	0.02	0.02	0.01	0.01	0.01	0.01
0.4 · Pmax		(kN)	58.96	60.00	58.67	63.96	62.17	64.83	61.43	2.62
0.4・Pmax 時の変位		(mm)	0.21	0.26	0.24	0.29	0.26	0.24	0.25	0.03
0.9 · Pmax		(kN)	132.66	135.00	132.00	143.91	139.88	145.86	138.22	5.89
0.9・Pmax 時の変位		(mm)	0.72	0.71	0.76	0.78	0.81	0.76	0.76	0.04
特定変位時の荷重 P	1mm 時の P	(kN)	147.25	148.35	143.98	157.40	151.70	161.44	151.69	6.60
	2mm 時の P	(kN)	124.82	128.99	l	_	l	162.12	l	l
	3mm 時の P	(kN)	_	l	l	_	l	_	ı	l
	5mm 時の P	(kN)	_	-	-	_	-	_	-	_
	7mm 時の P	(kN)	_	1	1	_	1	_	1	1
	10mm 時の P	(kN)	_	ı	I	_	ı	_	ı	ı
	20mm 時の P	(kN)	_	ı	I	_	ı	_	ı	ı
	30mm 時の P	(kN)	_	-	-	_	_	_	_	_

表 3.2.3-2b 最大荷重(95%下限値)・短期基準引張耐力(95%下限値)・基準剛性(50%下限値)の算定

	Pmax	Ру	2/3·Pmax	初期剛性 K	Pu×(0.2/Ds) (参考)	3mm 時の P (参考)
No1 試験体	147.40	80.36	98.27	224.58	73.11	_
No2 試験体	150.00	82.86	100.00	189.52	68.58	_
No3 試験体	146.67	81.35	97.78	198.31	93.84	_
No4 試験体	159.90	114.70	106.60	182.40	47.41	_
No5 試験体	155.42	82.99	103.61	187.49	51.15	_
No6 試験体	162.07	80.16	108.05	212.47	77.58	_
試験体数 n	6	6	6	6	6	6
試験体数 n による係数 k	2.336	2.336	2.336	0.297	2.336	2.336
平均値	153.6	87.1	102.4	199.1	68.61	_
標準偏差	6.54	13.59	4.36	16.33	17.27	_
変動係数 CV	0.043	0.156	0.043	0.082	0.252	_
ばらつき係数	0.90	0.64	0.90	0.98	0.41	_
基準最大耐力 Pmaxo	138.29	1	_			_
短期基準引張耐力 Po	_	55.33	92.19	_	28.26	
基準剛性 Ko	_	_	_	194.28	_	_

表 3.2.3-3a 繊維直交方向引張試験結果 (A-3)

			No1	No2	No3	No4	No5	No6	平均	標準偏差
最大荷重	Pmax	(kN)	292.55	305.87	288.90	285.82	302.42	292.50	294.68	7.83
最大荷重の 2/3	2/3·Pmax	(kN)	195.03	203.91	192.60	190.55	201.61	195.00	196.45	5.22
最大荷重時の変位	δmax	(mm)	0.73	0.83	0.94	0.80	0.76	0.73	0.80	0.08
降伏荷重	Py	(kN)	140.12	158.23	148.64	142.67	147.72	140.12	146.25	6.92
降伏変位	δу	(mm)	0.18	0.18	0.19	0.13	0.12	0.18	0.16	0.03
終局荷重	Pu	(kN)	257.67	283.43	270.24	262.67	265.67	257.67	266.23	9.71
終局変位	δυ	(mm)	0.73	0.92	1.09	0.89	0.76	0.73	0.85	0.14
初期剛性	K	(kN/mm)	759.70	849.00	749.32	1411.6	1522.3	759.76	1008.6	358.61
降伏点回転角	δv	(mm)	0.33	0.32	0.34	0.24	0.21	0.33	0.30	0.05
塑性率	μ		2.24	2.89	3.16	3.71	3.55	2.24	2.97	0.63
構造特性係数	Ds		0.54	0.46	0.43	0.39	0.40	0.54	0.46	0.06
0.1 · Pmax		(kN)	29.26	30.59	28.89	28.58	30.24	29.25	29.47	0.78
0.1・Pmax 時の変位		(mm)	0.01	0.00	0.01	0.00	0.00	0.01	0.01	0.01
0.4 · Pmax		(kN)	117.02	122.35	115.56	114.33	120.97	117.00	117.87	3.13
0.4・Pmax 時の変位		(mm)	0.13	0.11	0.12	0.06	0.06	0.13	0.10	0.03
0.9 · Pmax		(kN)	263.30	275.28	260.01	257.24	272.18	263.25	265.21	7.04
0.9・Pmax 時の変位		(mm)	0.52	0.52	0.54	0.48	0.50	0.52	0.52	0.02
特定変位時の荷重 P	1mm 時の P	(kN)	_	_	288.13	_	_	_	_	_
	2mm 時の P	(kN)	_	_	_	_	_	_	_	_
	3mm 時の P	(kN)	_	_	_	_	_	_	_	_
	5mm 時の P	(kN)	_	_	_	_	_	_	_	_
	7mm 時の P	(kN)	_	_	_	_	_	_	_	_
	10mm 時の P	(kN)	_	_	_	_	_	_	_	_
	20mm 時の P	(kN)	_	_	_	_	_	_	_	_
	30mm 時の P	(kN)	_	_	-	_	_	_	_	_

表 3.2.3-3b 最大荷重(95%下限値)・短期基準引張耐力(95%下限値)・基準剛性(50%下限値)の算定

	Pmax	Ру	2/3·Pmax	初期剛性 K	Pu×(0.2/Ds) (参考)	3mm 時の P (参考)
No1 試験体	292.55	140.12	195.03	759.70	96.14	_
No2 試験体	305.87	158.23	203.91	849.00	123.86	_
No3 試験体	288.90	148.64	192.60	749.32	124.70	_
No4 試験体	285.82	142.67	190.55	1411.66	133.16	_
No5 試験体	302.42	147.72	201.61	1522.38	131.26	_
No6 試験体	292.50	140.12	195.00	759.76	96.14	_
試験体数 n	6	6	6	6	6	6
試験体数 n による係数 k	2.336	2.336	2.336	0.297	2.336	2.336
平均値	294.7	146.3	196.5	1008.6	117.54	_
標準偏差	7.83	6.92	5.22	358.61	16.97	_
変動係数 CV	0.027	0.047	0.027	0.356	0.144	_
ばらつき係数	0.94	0.89	0.94	0.89	0.66	_
基準最大耐力 Pmaxo	276.39	1	_			_
短期基準引張耐力 Po	_	130.09	184.26		77.91	_
基準剛性 Ko	_	_	_	902.13	_	

表 3.2.3-4a 繊維直交方向引張試験結果 (A-4)

			No1	No2	No3	No4	No5	No6	平均	標準偏差
最大荷重	Pmax	(kN)	105.87	100.85	98.65	95.35	111.07	107.90	103.28	5.98
最大荷重の 2/3	2/3·Pmax	(kN)	70.58	67.23	65.77	63.57	74.05	71.93	68.85	3.99
最大荷重時の変位	δmax	(mm)	3.78	4.49	4.53	3.68	4.45	3.79	4.12	0.41
降伏荷重	Py	(kN)	58.69	56.39	55.78	52.94	63.07	62.74	58.27	4.03
降伏変位	δу	(mm)	0.91	0.95	0.91	0.83	1.00	0.99	0.93	0.06
終局荷重	Pu	(kN)	94.85	91.63	89.26	86.54	100.24	98.30	93.47	5.30
終局変位	δυ	(mm)	9.12	8.02	9.08	9.76	8.27	7.37	8.60	0.87
初期剛性	K	(kN/mm)	67.84	65.37	65.70	66.14	70.41	68.41	67.31	1.94
降伏点回転角	δν	(mm)	6.23	5.20	6.25	7.15	5.22	4.75	5.80	0.89
塑性率	μ		6.23	5.20	6.25	7.15	5.22	4.75	5.80	0.89
構造特性係数	Ds		0.30	0.33	0.29	0.27	0.33	0.34	0.31	0.03
0.1 · Pmax		(kN)	10.59	10.09	9.87	9.54	11.11	10.79	10.33	0.60
0.1・Pmax 時の変位		(mm)	0.11	0.13	0.11	0.11	0.12	0.11	0.11	0.01
0.4 · Pmax		(kN)	42.35	40.34	39.46	38.14	44.43	43.16	41.31	2.39
0.4・Pmax 時の変位		(mm)	0.58	0.59	0.56	0.54	0.59	0.58	0.57	0.02
0.9 · Pmax		(kN)	95.28	90.77	88.79	85.82	99.96	97.11	92.95	5.38
0.9・Pmax 時の変位		(mm)	2.35	2.69	2.49	2.09	2.76	2.42	2.47	0.24
特定変位時の荷重 P	1mm 時の P	(kN)	61.39	57.23	58.44	58.60	63.24	63.21	60.35	2.61
	2mm 時の P	(kN)	87.47	79.67	79.56	83.14	86.58	89.08	84.25	4.08
	3mm 時の P	(kN)	102.11	93.64	93.70	93.30	102.82	103.56	98.19	5.11
	5mm 時の P	(kN)	102.45	100.36	97.54	93.38	109.54	102.84	101.02	5.46
	7mm 時の P	(kN)	91.74	89.27	88.46	85.85	97.72	89.80	90.47	4.04
	10mm 時の P	(kN)	81.50	_	-	75.54	1	_	_	_
	20mm 時の P	(kN)	_	_	_	_	_	_	_	_
	30mm 時の P	(kN)	_	_	_	_	_	_	_	_

表 3.2.3-4b 最大荷重(95%下限値)・短期基準引張耐力(95%下限値)・基準剛性(50%下限値)の算定

	Pmax	Ру	2/3·Pmax	初期剛性 K	Pu×(0.2/Ds) (参考)	3mm 時の P (参考)
No1 試験体	105.87	58.69	70.58	67.84	64.23	102.11
No2 試験体	100.85	56.39	67.23	65.37	56.19	93.64
No3 試験体	98.65	55.78	65.77	65.70	60.52	93.70
No4 試験体	95.35	52.94	63.57	66.14	63.12	93.30
No5 試験体	111.07	63.07	74.05	70.41	61.62	102.82
No6 試験体	107.90	62.74	71.93	68.41	57.32	103.56
試験体数 n	6	6	6	6	6	6
試験体数 n による係数 k	2.336	2.336	2.336	0.297	2.336	2.336
平均値	103.3	58.3	68.9	67.3	60.50	98.19
標準偏差	5.98	4.03	3.99	1.94	3.19	5.11
変動係数 CV	0.058	0.069	0.058	0.029	0.053	0.052
ばらつき係数	0.86	0.84	0.86	0.99	0.88	0.88
基準最大耐力 Pmaxo	89.31		_			_
短期基準引張耐力 Po		48.85	59.54	_	53.06	86.26
基準剛性 K ₀	_	_	_	66.74	_	_

表 3.2.3-5a 繊維直交方向引張試験結果 (B-1)

			No1	No2	No3	No4	No5	No6	平均	標準偏差
最大荷重	Pmax	(kN)	77.50	89.45	80.82	84.50	82.87	78.07	82.20	4.46
最大荷重の 2/3	2/3·Pmax	(kN)	51.67	59.63	53.88	56.33	55.25	52.05	54.80	2.97
最大荷重時の変位	δmax	(mm)	1.10	0.99	0.83	1.01	1.10	0.92	0.99	0.10
降伏荷重	Py	(kN)	44.77	51.08	40.87	51.84	44.74	38.56	45.31	5.33
降伏変位	δу	(mm)	0.33	0.35	0.26	0.36	0.31	0.26	0.31	0.05
終局荷重	Pu	(kN)	70.93	80.82	72.35	76.64	75.44	71.44	74.60	3.80
終局変位	δυ	(mm)	2.24	2.35	2.59	2.15	2.11	2.10	2.26	0.19
初期剛性	K	(kN/mm)	143.88	144.88	155.29	140.55	150.94	149.13	147.45	5.36
降伏点回転角	δν	(mm)	0.53	0.56	0.46	0.54	0.51	0.48	0.51	0.04
塑性率	μ		4.26	4.22	5.69	3.99	4.11	4.37	4.44	0.63
構造特性係数	Ds		0.36	0.37	0.31	0.38	0.37	0.36	0.36	0.02
0.1 · Pmax		(kN)	7.75	8.95	8.08	8.45	8.29	7.81	8.22	0.45
0.1・Pmax 時の変位		(mm)	0.04	0.04	0.04	0.04	0.04	0.03	0.04	0.00
0.4 · Pmax		(kN)	31.00	35.78	32.33	33.80	33.15	31.23	32.88	1.78
0.4・Pmax 時の変位		(mm)	0.20	0.23	0.19	0.22	0.20	0.19	0.21	0.01
0.9 · Pmax		(kN)	69.75	80.51	72.74	76.05	74.58	70.26	73.98	4.01
0.9・Pmax 時の変位		(mm)	0.71	0.67	0.56	0.65	0.74	0.66	0.67	0.06
特定変位時の荷重 P	1mm 時の P	(kN)	76.99	89.41	79.58	84.47	82.35	77.94	81.79	4.65
	2mm 時の P	(kN)	65.55	76.92	70.56	69.98	70.61	65.11	69.79	4.29
	3mm 時の P	(kN)	_	65.48	62.05	_	61.57	55.90	_	_
	5mm 時の P	(kN)	_		1	1	1		1	_
	7mm 時の P	(kN)	_	-	-	-	-	-	-	_
	10mm 時の P	(kN)	_	-	1	1	1	-	1	_
	20mm 時の P	(kN)	_	_	_	_	_	_	_	_
	30mm 時の P	(kN)	_	1	_	_	-	-	_	_

表 3.2.3-5b 最大荷重(95%下限値)・短期基準引張耐力(95%下限値)・基準剛性(50%下限値)の算定

	Pmax	Ру	2/3·Pmax	初期剛性 K	Pu×(0.2/Ds) (参考)	3mm 時の P (参考)
No1 試験体	77.50	44.77	51.67	143.88	38.91	_
No2 試験体	89.45	51.08	59.63	144.88	44.07	65.48
No3 試験体	80.82	40.87	53.88	155.29	46.60	62.05
No4 試験体	84.50	51.84	56.33	140.55	40.50	_
No5 試験体	82.87	44.74	55.25	150.94	40.52	61.57
No6 試験体	78.07	38.56	52.05	149.13	39.75	55.90
試験体数 n	6	6	6	6	6	6
試験体数 n による係数 k	2.336	2.336	2.336	0.297	2.336	2.336
平均値	82.2	45.3	54.8	147.4	41.72	_
標準偏差	4.46	5.33	2.97	5.36	2.97	_
変動係数 CV	0.054	0.118	0.054	0.036	0.071	_
ばらつき係数	0.87	0.73	0.87	0.99	0.83	_
基準最大耐力 Pmaxo	71.79	_	_	_	_	_
短期基準引張耐力 Po	_	32.87	47.86	_	34.79	_
基準剛性 Ko	_		_	145.85	_	_

表 3.2.3-6a 繊維直交方向引張試験結果 (B-2)

			No1	No2	No3	No4	No5	No6	平均	標準偏差
最大荷重	Pmax	(kN)	175.67	179.22	186.00	180.77	167.25	180.65	178.26	6.34
最大荷重の 2/3	2/3·Pmax	(kN)	117.11	119.48	124.00	120.51	111.50	120.43	118.84	4.22
最大荷重時の変位	δmax	(mm)	1.31	1.30	1.32	1.35	1.40	1.33	1.33	0.04
降伏荷重	Py	(kN)	115.60	106.08	111.97	115.65	123.01	105.69	113.00	6.58
降伏変位	δу	(mm)	0.58	0.48	0.56	0.61	0.68	0.50	0.57	0.07
終局荷重	Pu	(kN)	155.42	162.41	170.22	163.09	151.08	161.79	160.67	6.65
終局変位	δυ	(mm)	3.45	3.37	3.14	3.28	3.44	2.99	3.28	0.18
初期剛性	K	(kN/mm)	183.03	200.00	178.80	171.45	163.62	187.87	180.80	12.73
降伏点回転角	δν	(mm)	0.78	0.74	0.84	0.86	0.84	0.77	0.81	0.05
塑性率	μ		4.41	4.58	3.72	3.82	4.10	3.87	4.08	0.35
構造特性係数	Ds		0.36	0.35	0.39	0.39	0.37	0.39	0.37	0.02
0.1 · Pmax		(kN)	17.57	17.92	18.60	18.08	16.73	18.07	17.83	0.63
0.1・Pmax 時の変位		(mm)	0.04	0.01	0.02	0.03	0.03	0.02	0.03	0.01
0.4 · Pmax		(kN)	70.27	71.69	74.40	72.31	66.90	72.26	71.30	2.53
0.4・Pmax 時の変位		(mm)	0.33	0.28	0.33	0.34	0.34	0.31	0.32	0.02
0.9 · Pmax		(kN)	158.10	161.30	167.40	162.69	150.53	162.59	160.43	5.70
0.9・Pmax 時の変位		(mm)	0.93	0.94	0.97	0.99	1.00	0.94	0.96	0.03
特定変位時の荷重 P	1mm 時の P	(kN)	164.68	166.64	170.66	163.73	150.50	168.33	164.09	7.11
	2mm 時の P	(kN)	146.84	154.58	169.85	167.60	144.32	151.50	155.78	10.66
	3mm 時の P	(kN)	134.59	152.09	152.67	148.76	140.30	125.78	142.37	10.78
	5mm 時の P	(kN)			l	_	1		_	_
	7mm 時の P	(kN)	-	1	1	_	1	-	_	_
	10mm 時の P	(kN)	ı	ı	ı	_	ı	ı	_	_
	20mm 時の P	(kN)	ı	ı	ı	_	ı	ı	_	_
	30mm 時の P	(kN)	_	-	-	_	-	-	_	_

表 3.2.3-6b 最大荷重(95%下限値)・短期基準引張耐力(95%下限値)・基準剛性(50%下限値)の算定

	Pmax	Ру	2/3·Pmax	初期剛性 K	Pu×(0.2/Ds) (参考)	3mm 時の P (参考)
No1 試験体	175.67	115.60	117.11	183.03	86.96	134.59
No2 試験体	179.22	106.08	119.48	200.00	92.79	152.09
No3 試験体	186.00	111.97	124.00	178.80	86.35	152.67
No4 試験体	180.77	115.65	120.51	171.45	84.09	148.76
No5 試験体	167.25	123.01	111.50	163.62	81.03	140.30
No6 試験体	180.65	105.69	120.43	187.87	84.02	125.78
試験体数 n	6	6	6	6	6	6
試験体数 n による係数 k	2.336	2.336	2.336	0.297	2.336	2.336
平均値	178.3	113.0	118.8	180.8	85.87	142.37
標準偏差	6.34	6.58	4.22	12.73	3.98	10.78
変動係数 CV	0.036	0.058	0.036	0.070	0.046	0.076
ばらつき係数	0.92	0.86	0.92	0.98	0.89	0.82
基準最大耐力 Pmaxo	163.46	1	_			_
短期基準引張耐力 Po	_	97.63	108.97	_	76.57	
基準剛性 K ₀	_	_	_	177.01	_	

表 3.2.3-7a 繊維直交方向引張試験結果 (B-3)

			No1	No2	No3	No4	No5	No6	平均	標準偏差
最大荷重	Pmax	(kN)	338.70	335.97	344.90	327.60	329.00	301.70	329.65	15.10
最大荷重の 2/3	2/3·Pmax	(kN)	225.80	223.98	229.93	218.40	219.33	201.13	219.76	10.07
最大荷重時の変位	δmax	(mm)	1.17	1.13	1.15	1.16	1.15	1.66	1.24	0.21
降伏荷重	Py	(kN)	166.24	172.97	167.55	167.94	161.99	160.10	166.13	4.60
降伏変位	δу	(mm)	0.20	0.24	0.20	0.21	0.18	0.24	0.21	0.03
終局荷重	Pu	(kN)	308.28	301.15	318.52	301.28	310.30	280.89	303.40	12.78
終局変位	δυ	(mm)	1.51	1.15	1.59	1.75	2.04	2.84	1.81	0.58
初期剛性	K	(kN/mm)	844.17	770.33	878.76	978.44	1008.7	821.54	883.67	92.65
降伏点回転角	δν	(mm)	0.38	0.42	0.38	0.37	0.34	0.43	0.39	0.03
塑性率	μ		3.96	2.74	4.17	4.69	5.95	6.66	4.70	1.42
構造特性係数	Ds		0.38	0.47	0.37	0.35	0.30	0.28	0.36	0.07
0.1 · Pmax		(kN)	33.87	33.60	34.49	32.76	32.90	30.17	32.96	1.51
0.1・Pmax 時の変位		(mm)	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.00
0.4 · Pmax		(kN)	135.48	134.39	137.96	131.04	131.60	120.68	131.86	6.04
0.4・Pmax 時の変位		(mm)	0.12	0.14	0.13	0.11	0.11	0.12	0.12	0.01
0.9 · Pmax		(kN)	304.83	302.37	310.41	294.84	296.10	271.53	296.68	13.59
0.9・Pmax 時の変位		(mm)	0.73	0.79	0.69	0.81	0.62	0.89	0.76	0.09
特定変位時の荷重 P	1mm 時の P	(kN)	330.24	328.63	337.32	317.52	326.22	281.53	320.24	20.02
	2mm 時の P	(kN)	_	_	_	_	315.97	292.06	304.02	16.91
	3mm 時の P	(kN)	_	_	_	_	_	265.67	_	_
	5mm 時の P	(kN)	_	_	_	_	-	_		
	7mm 時の P	(kN)	_	_	_	_	_	_	_	_
	10mm 時の P	(kN)	_	_	_	_	_	_	_	_
	20mm 時の P	(kN)	_	_	_	_	_	_	_	_
	30mm 時の P	(kN)	_	_	_	_	_	_	_	_

表 3.2.3-7b 最大荷重(95%下限値)・短期基準引張耐力(95%下限値)・基準剛性(50%下限値)の算定

	Pmax	Ру	2/3·Pmax	初期剛性 K	Pu×(0.2/Ds) (参考)	3mm 時の P (参考)
					(参考)	(参考)
No1 試験体	338.70	166.24	225.80	844.17	162.29	_
No2 試験体	335.97	172.97	223.98	770.33	127.45	_
No3 試験体	344.90	167.55	229.93	878.76	172.67	_
No4 試験体	327.60	167.94	218.40	978.44	174.40	_
No5 試験体	329.00	161.99	219.33	1008.78	204.96	_
No6 試験体	301.70	160.10	201.13	821.54	197.24	265.67
試験体数 n	6	6	6	6	6	6
試験体数 n による係数 k	2.336	2.336	2.336	0.297	2.336	2.336
平均値	329.6	166.1	219.8	883.7	173.17	_
標準偏差	15.10	4.60	10.07	92.65	27.57	_
変動係数 CV	0.046	0.028	0.046	0.105	0.159	_
ばらつき係数	0.89	0.94	0.89	0.97	0.63	_
基準最大耐力 Pmax ₀	294.37	_	_	_	_	_
短期基準引張耐力 Po	_	155.40	196.25	_	108.77	_
基準剛性 Ko	_		_	856.15	_	_

表 3.2.3-8a 繊維直交方向引張試験結果 (B-4)

			No1	No2	No3	No4	No5	No6	平均	標準偏差
最大荷重	Pmax	(kN)	101.77	96.37	102.15	95.17	110.97	105.75	102.03	5.88
最大荷重の 2/3	2/3·Pmax	(kN)	67.85	64.25	68.10	63.45	73.98	70.50	68.02	3.92
最大荷重時の変位	δmax	(mm)	3.78	4.48	3.78	4.72	3.14	3.52	3.90	0.60
降伏荷重	Py	(kN)	60.98	57.10	58.01	55.73	63.84	62.26	59.65	3.18
降伏変位	δу	(mm)	0.93	0.89	0.92	0.90	0.89	0.92	0.91	0.02
終局荷重	Pu	(kN)	91.78	87.68	92.89	87.59	99.80	95.61	92.56	4.71
終局変位	δυ	(mm)	8.93	8.78	8.29	8.20	7.61	9.16	8.49	0.57
初期剛性	K	(kN/mm)	70.12	69.06	64.74	66.67	72.76	69.99	68.89	2.82
降伏点回転角	δv	(mm)	1.40	1.36	1.48	1.42	1.39	1.41	1.41	0.04
塑性率	μ		6.38	6.43	5.60	5.77	5.47	6.51	6.03	0.46
構造特性係数	Ds		0.29	0.29	0.31	0.31	0.32	0.29	0.30	0.01
0.1 · Pmax		(kN)	10.18	9.64	10.22	9.52	11.10	10.58	10.20	0.59
0.1・Pmax 時の変位		(mm)	0.11	0.10	0.10	0.10	0.11	0.11	0.11	0.00
0.4 · Pmax		(kN)	40.71	38.55	40.86	38.07	44.39	42.30	40.81	2.35
0.4・Pmax 時の変位		(mm)	0.54	0.52	0.58	0.53	0.57	0.56	0.55	0.02
0.9 · Pmax		(kN)	91.59	86.73	91.94	85.65	99.87	95.18	91.83	5.29
0.9・Pmax 時の変位		(mm)	2.31	2.27	2.29	2.34	1.85	2.02	2.18	0.20
特定変位時の荷重 P	1mm 時の P	(kN)	62.81	60.47	59.78	58.58	68.66	65.14	62.57	3.79
	2mm 時の P	(kN)	85.40	80.86	85.45	79.48	97.80	94.61	87.27	7.39
	3mm 時の P	(kN)	97.73	92.03	99.42	90.80	110.79	105.11	99.31	7.66
	5mm 時の P	(kN)	99.19	95.19	99.70	94.60	100.98	101.14	98.47	2.87
	7mm 時の P	(kN)	88.97	85.35	89.24	85.51	90.84	91.79	88.62	2.68
	10mm 時の P	(kN)	77.18	-	1	_	1	81.65	-	_
	20mm 時の P	(kN)	ı	ı	ı	_	ı	ı	ı	_
	30mm 時の P	(kN)	_	_	_	_	_	_	_	_

表 3.2.3-8b 最大荷重(95%下限値)・短期基準引張耐力(95%下限値)・基準剛性(50%下限値)の算定

	Pmax	Ру	2/3·Pmax	初期剛性 K	Pu×(0.2/Ds) (参考)	3mm 時の P (参考)
No1 試験体	101.77	60.98	67.85	70.12	62.96	97.73
No2 試験体	96.37	57.10	64.25	69.06	60.40	92.03
No3 試験体	102.15	58.01	68.10	64.74	59.34	99.42
No4 試験体	95.17	55.73	63.45	66.67	56.87	90.80
No5 試験体	110.97	63.84	73.98	72.76	62.92	110.79
No6 試験体	105.75	62.26	70.50	69.99	66.27	105.11
試験体数 n	6	6	6	6	6	6
試験体数 n による係数 k	2.336	2.336	2.336	0.297	2.336	2.336
平均値	102.0	59.7	68.0	68.9	61.46	99.31
標準偏差	5.88	3.18	3.92	2.82	3.29	7.66
変動係数 CV	0.058	0.053	0.058	0.041	0.054	0.077
ばらつき係数	0.87	0.88	0.87	0.99	0.87	0.82
基準最大耐力 Pmaxo	88.29	_	_	_	_	_
短期基準引張耐力 Po	_	52.22	58.86	_	53.77	81.42
基準剛性 Ko	_		_	68.05	_	_

表 3.2.3-9a 繊維直交方向引張試験結果(C-1)

			No1	No2	No3	No4	No5	No6	平均	標準偏差
最大荷重	Pmax	(kN)	100.90	90.30	100.40	97.32	114.80	81.02	97.46	11.34
最大荷重の 2/3	2/3·Pmax	(kN)	67.27	60.20	66.93	64.88	76.53	54.01	64.97	7.56
最大荷重時の変位	δmax	(mm)	0.43	0.33	0.43	0.38	0.43	0.47	0.41	0.05
降伏荷重	Py	(kN)	51.44	47.87	50.38	50.01	56.92	39.65	49.38	5.65
降伏変位	δу	(mm)	0.16	0.12	0.14	0.12	0.12	0.10	0.13	0.02
終局荷重	Pu	(kN)	88.69	85.39	88.10	85.06	98.24	74.92	86.73	7.51
終局変位	δυ	(mm)	2.38	1.23	2.61	3.22	1.47	5.06	2.66	1.39
初期剛性	K	(kN/mm)	322.18	379.94	344.96	456.45	474.27	381.58	393.23	60.42
降伏点回転角	δν	(mm)	0.27	0.22	0.25	0.20	0.21	0.19	0.22	0.03
塑性率	μ		8.88	5.56	10.34	16.19	6.99	26.52	12.41	7.83
構造特性係数	Ds		0.24	0.31	0.23	0.18	0.28	0.14	0.23	0.06
0.1 · Pmax		(kN)	10.09	9.03	10.04	9.73	11.48	8.10	9.75	1.13
0.1・Pmax 時の変位		(mm)	0.02	0.02	0.02	0.02	0.02	0.01	0.02	0.00
0.4 · Pmax		(kN)	40.36	36.12	40.16	38.93	45.92	32.41	38.98	4.54
0.4・Pmax 時の変位		(mm)	0.11	0.09	0.11	0.08	0.09	0.08	0.09	0.02
0.9 · Pmax		(kN)	90.81	81.27	90.36	87.59	103.32	72.92	87.71	10.20
0.9・Pmax 時の変位		(mm)	0.33	0.25	0.32	0.27	0.30	0.27	0.29	0.03
特定変位時の荷重 P	1mm 時の P	(kN)	86.80	83.38	89.98	85.78	91.30	78.57	85.97	4.62
	2mm 時の P	(kN)	84.11	_	85.73	85.82	90.18	79.39	_	-
	3mm 時の P	(kN)	_	_	77.44	79.93	_	76.07	_	-
	5mm 時の P	(kN)	_	_	ı		_	_	-	
	7mm 時の P	(kN)	_	_	_	_	_	_	_	_
	10mm 時の P	(kN)	_	_	_	_	_	_	_	_
	20mm 時の P	(kN)	_	_	_	_	_	_	_	_
	30mm 時の P	(kN)	_	_	_	_	_	_	_	_

表 3.2.3-9b 最大荷重(95%下限値)・短期基準引張耐力(95%下限値)・基準剛性(50%下限値)の算定

	Pmax	Ру	2/3·Pmax	初期剛性 K	Pu×(0.2/Ds) (参考)	3mm 時の P (参考)
No1 試験体	100.90	51.44	67.27	322.18	72.61	_
No2 試験体	90.30	47.87	60.20	379.94	54.34	_
No3 試験体	100.40	50.38	66.93	344.96	78.16	77.44
No4 試験体	97.32	50.01	64.88	456.45	95.30	79.93
No5 試験体	114.80	56.92	76.53	474.27	70.79	_
No6 試験体	81.02	39.65	54.01	381.58	108.09	76.07
試験体数 n	6	6	6	6	6	6
試験体数 n による係数 k	2.336	2.336	2.336	0.297	2.336	2.336
平均値	97.5	49.4	65.0	393.2	79.88	_
標準偏差	11.34	5.65	7.56	60.42	19.10	_
変動係数 CV	0.116	0.114	0.116	0.154	0.239	_
ばらつき係数	0.73	0.73	0.73	0.95	0.44	_
基準最大耐力 Pmaxo	70.97		_			_
短期基準引張耐力 Po		36.19	47.31		35.26	_
基準剛性 Ko	_	_	_	375.28	_	

表 3.2.3-10a 繊維直交方向引張試験結果(C-2)

			No1	No2	No3	No4	No5	No6	平均	標準偏差
最大荷重	Pmax	(kN)	235.82	167.32	240.00	215.42	176.65	199.67	205.81	30.10
最大荷重の 2/3	2/3·Pmax	(kN)	157.21	111.55	160.00	143.61	117.77	133.11	137.21	20.07
最大荷重時の変位	δmax	(mm)	0.93	0.68	0.98	0.79	1.58	2.31	1.21	0.62
降伏荷重	Py	(kN)	_	92.46	169.75	111.27	74.26	114.89	_	_
降伏変位	δу	(mm)	_	0.33	0.53	0.33	0.16	0.34	_	_
終局荷重	Pu	(kN)	218.49	147.25	222.81	201.17	158.12	182.97	188.47	31.28
終局変位	δυ	(mm)	2.34	3.29	1.85	1.72	4.56	3.60	2.89	1.11
初期剛性	K	(kN/mm)	263.24	247.13	281.74	287.91	379.39	312.66	295.35	46.82
降伏点回転角	δν	(mm)	0.76	0.52	0.70	0.60	0.33	0.55	0.58	0.15
塑性率	μ		3.09	6.28	2.64	2.85	13.77	6.60	5.87	4.25
構造特性係数	Ds		0.44	0.29	0.48	0.46	0.19	0.29	0.36	0.12
0.1 · Pmax		(kN)	23.58	16.73	24.00	21.54	17.67	19.97	20.58	3.01
0.1・Pmax 時の変位		(mm)	0.01	0.01	0.02	0.01	0.00	0.03	0.01	0.01
0.4 · Pmax		(kN)	94.33	66.93	96.00	86.17	70.66	79.87	82.33	12.04
0.4・Pmax 時の変位		(mm)	0.28	0.21	0.27	0.24	0.14	0.22	0.23	0.05
0.9 · Pmax		(kN)	212.24	150.59	216.00	193.88	158.99	179.70	185.23	27.09
0.9・Pmax 時の変位		(mm)	0.74	0.58	0.73	0.66	0.48	0.60	0.63	0.10
特定変位時の荷重 P	1mm 時の P	(kN)	231.76	163.11	238.75	208.02	171.12	183.98	199.46	31.70
	2mm 時の P	(kN)	204.06	148.31	190.02	178.64	166.28	195.35	180.44	20.53
	3mm 時の P	(kN)	_	135.99	180.64	_	157.13	171.44	_	-
	5mm 時の P	(kN)	_	_	1	1	131.69	_	_	-
	7mm 時の P	(kN)	_	_	-	-	-	_	_	_
	10mm 時の P	(kN)	_	_	_	_	_	_	_	_
	20mm 時の P	(kN)	_	_	_	_	_	_	_	_
	30mm 時の P	(kN)	_	_	_	_	_	_	_	_

表 3.2.3-10b 最大荷重(95%下限値)・短期基準引張耐力(95%下限値)・基準剛性(50%下限値)の算定

	Pmax	Ру	2/3·Pmax	初期剛性 K	Pu×(0.2/Ds) (参考)	3mm 時の P (参考)
No1 試験体	235.82	_	157.21	263.24	99.43	_
No2 試験体	167.32	92.46	111.55	247.13	100.16	135.99
No3 試験体	240.00	169.75	160.00	281.74	92.15	180.64
No4 試験体	215.42	111.27	143.61	287.91	87.29	_
No5 試験体	176.65	74.26	117.77	379.39	162.89	157.13
No6 試験体	199.67	114.89	133.11	312.66	127.78	171.44
試験体数 n	6	6	6	6	6	6
試験体数 n による係数 k	2.336	2.336	2.336	0.297	2.336	2.336
平均值	205.8	l	137.2	295.3	111.62	161.30
標準偏差	30.10	l	20.07	46.82	28.78	19.45
変動係数 CV	0.146	1	0.146	0.159	0.258	0.121
ばらつき係数	0.66		0.66	0.95	0.40	0.72
基準最大耐力 Pmaxo	135.49		_		_	_
短期基準引張耐力 Po			90.33		44.39	_
基準剛性 Ko	_	_	_	281.44	_	_

表 3.2.3-11a 繊維直交方向引張試験結果 (C-3)

			No1	No2	No3	No4	No5	No6	平均	標準偏差
最大荷重	Pmax	(kN)	182.15	205.73	194.65	175.38	179.48	186.83	187.37	11.17
最大荷重の 2/3	2/3·Pmax	(kN)	121.43	137.15	129.77	116.92	119.65	124.55	124.91	7.45
最大荷重時の変位	δmax	(mm)	2.61	2.79	2.68	2.56	2.38	2.46	2.58	0.15
降伏荷重	Py	(kN)	101.02	116.63	106.50	98.82	102.06	100.73	104.29	6.56
降伏変位	δу	(mm)	0.83	0.92	0.86	0.84	0.91	0.80	0.86	0.05
終局荷重	Pu	(kN)	165.28	186.73	175.51	156.76	160.12	166.73	168.52	10.98
終局変位	δυ	(mm)	6.86	6.52	5.09	7.94	7.81	6.12	6.72	1.07
初期剛性	K	(kN/mm)	121.73	130.36	128.87	119.66	113.10	127.65	123.56	6.62
降伏点回転角	$\delta \mathbf{v}$	(mm)	1.36	1.47	1.42	1.33	1.43	1.32	1.39	0.06
塑性率	μ		5.03	4.44	3.59	5.94	5.47	4.65	4.85	0.83
構造特性係数	Ds		0.33	0.36	0.40	0.30	0.32	0.35	0.34	0.03
0.1 · Pmax		(kN)	18.22	20.57	19.47	17.54	17.95	18.68	18.74	1.12
0.1・Pmax 時の変位		(mm)	0.12	0.13	0.12	0.12	0.13	0.12	0.12	0.00
0.4 · Pmax		(kN)	72.86	82.29	77.86	70.15	71.79	74.73	74.95	4.47
0.4・Pmax 時の変位		(mm)	0.57	0.60	0.58	0.56	0.60	0.56	0.58	0.02
0.9 · Pmax		(kN)	163.94	185.15	175.19	157.84	161.53	168.14	168.63	10.05
0.9・Pmax 時の変位		(mm)	1.70	1.87	1.89	1.68	1.75	1.62	1.75	0.11
特定変位時の荷重 P	1mm 時の P	(kN)	116.59	125.00	119.63	113.55	110.37	121.28	117.74	5.33
	2mm 時の P	(kN)	173.16	191.51	180.74	168.15	173.26	181.55	178.06	8.31
	3mm 時の P	(kN)	180.62	205.34	191.75	174.34	175.83	182.30	185.03	11.69
	5mm 時の P	(kN)	162.45	183.76	160.55	158.82	160.04	158.82	164.07	9.74
	7mm 時の P	(kN)	142.31	153.90	143.97	139.72	142.30	143.69	144.32	4.93
	10mm 時の P	(kN)	_	-	1	_	135.07	-	-	_
	20mm 時の P	(kN)	_	-	1	_	-	-	-	_
	30mm 時の P	(kN)	_	_	_	_	_	_	_	_

表 3.2.3-11b 最大荷重(95%下限値)・短期基準引張耐力(95%下限値)・基準剛性(50%下限値)の算定

	Pmax	Ру	2/3·Pmax	初期剛性 K	Pu×(0.2/Ds) (参考)	3mm 時の P (参考)
No1 試験体	182.15	101.02	121.43	121.73	99.47	180.62
No2 試験体	205.73	116.63	137.15	130.36	104.83	205.34
No3 試験体	194.65	106.50	129.77	128.87	87.21	191.75
No4 試験体	175.38	98.82	116.92	119.66	103.46	174.34
No5 試験体	179.48	102.06	119.65	113.10	100.98	175.83
No6 試験体	186.83	100.73	124.55	127.65	96.02	182.30
試験体数 n	6	6	6	6	6	6
試験体数 n による係数 k	2.336	2.336	2.336	0.297	2.336	2.336
平均値	187.4	104.3	124.9	123.6	98.66	185.03
標準偏差	11.17	6.56	7.45	6.62	6.40	11.69
変動係数 CV	0.060	0.063	0.060	0.054	0.065	0.063
ばらつき係数	0.86	0.85	0.86	0.98	0.85	0.85
基準最大耐力 Pmaxo	161.28	1	_			_
短期基準引張耐力 Po	_	88.96	107.52	_	83.70	157.72
基準剛性 Ko	_	_	_	121.60	_	_

表 3.2.3-12a 繊維直交方向引張試験結果 (D-1)

			No1	No2	No3	No4	No5	No6	平均	標準偏差
最大荷重	Pmax	(kN)	132.67	123.70	107.45	121.35	132.40	150.92	128.08	14.50
最大荷重の 2/3	2/3·Pmax	(kN)	88.45	82.47	71.63	80.90	88.27	100.61	85.39	9.67
最大荷重時の変位	δmax	(mm)	0.76	0.64	0.70	1.09	0.75	0.96	0.82	0.17
降伏荷重	Py	(kN)	69.31	62.63	54.87	59.40	68.72	83.90	66.47	10.16
降伏変位	бу	(mm)	0.27	0.22	0.23	0.24	0.25	0.33	0.26	0.04
終局荷重	Pu	(kN)	119.23	108.22	95.77	110.80	120.71	144.05	116.46	16.22
終局変位	δυ	(mm)	1.73	2.94	2.90	3.45	1.31	1.20	2.25	0.96
初期剛性	K	(kN/mm)	262.47	291.83	235.59	242.09	279.77	257.39	261.52	21.54
降伏点回転角	δν	(mm)	0.47	0.37	0.41	0.45	0.43	0.57	0.45	0.07
塑性率	μ		3.71	7.88	7.08	7.66	3.03	2.09	5.24	2.58
構造特性係数	Ds		0.39	0.26	0.28	0.26	0.44	0.56	0.37	0.12
0.1 · Pmax		(kN)	13.27	12.37	10.75	12.14	13.24	15.09	12.81	1.45
0.1・Pmax 時の変位		(mm)	0.04	0.03	0.04	0.04	0.04	0.05	0.04	0.01
0.4 · Pmax		(kN)	53.07	49.48	42.98	48.54	52.96	60.37	51.23	5.80
0.4・Pmax 時の変位		(mm)	0.20	0.16	0.18	0.19	0.18	0.22	0.19	0.02
0.9 · Pmax		(kN)	119.40	111.33	96.71	109.22	119.16	135.83	115.27	13.05
0.9・Pmax 時の変位		(mm)	0.55	0.48	0.50	0.54	0.51	0.67	0.54	0.07
特定変位時の荷重 P	1mm 時の P	(kN)	128.08	114.05	101.80	120.99	121.32	150.21	122.74	16.14
	2mm 時の P	(kN)	100.12	103.96	92.40	110.34	98.63	_	_	_
	3mm 時の P	(kN)	_	98.51	85.79	102.52	_	_	_	_
	5mm 時の P	(kN)	_	_	_	_	_	_	_	_
	7mm 時の P	(kN)	_	_	-	_	_	_	-	_
	10mm 時の P	(kN)	_	_	_	_	_	_	_	_
	20mm 時の P	(kN)	_	_	_	_	_	_	_	_
	30mm 時の P	(kN)	_	_	_	_	_	_	_	_

表 3.2.3-12b 最大荷重(95%下限値)・短期基準引張耐力(95%下限値)・基準剛性(50%下限値)の算定

	Pmax	Ру	2/3·Pmax	初期剛性 K	Pu×(0.2/Ds) (参考)	3mm 時の P (参考)
No1 試験体	132.67	69.31	88.45	262.47	60.39	_
No2 試験体	123.70	62.63	82.47	291.83	83.13	98.51
No3 試験体	107.45	54.87	71.63	235.59	69.47	85.79
No4 試験体	121.35	59.40	80.90	242.09	83.83	102.52
No5 試験体	132.40	68.72	88.27	279.77	54.28	_
No6 試験体	150.92	83.90	100.61	257.39	51.45	_
試験体数 n	6	6	6	6	6	6
試験体数 n による係数 k	2.336	2.336	2.336	0.297	2.336	2.336
平均値	128.1	66.5	85.4	261.5	67.09	_
標準偏差	14.50	10.16	9.67	21.54	14.12	_
変動係数 CV	0.113	0.153	0.113	0.082	0.210	_
ばらつき係数	0.74	0.64	0.74	0.98	0.51	_
基準最大耐力 Pmaxo	94.21	_	_	_	_	_
短期基準引張耐力 Po	_	42.74	62.80	_	34.11	_
基準剛性 Ko	_	_	_	255.13	_	_

表 3.2.3-13a 繊維直交方向引張試験結果 (D-2)

			No1	No2	No3	No4	No5	No6	平均	標準偏差
最大荷重	Pmax	(kN)	231.73	240.10	252.58	285.95	220.33	217.48	241.36	25.38
最大荷重の 2/3	2/3·Pmax	(kN)	154.48	160.07	168.38	190.63	146.88	144.98	160.91	16.92
最大荷重時の変位	δmax	(mm)	0.93	0.68	0.98	0.79	1.58	2.31	1.21	0.62
降伏荷重	Py	(kN)	150.96	_	_	_	164.59	_	_	_
降伏変位	δу	(mm)	0.61	_	_	_	0.68	_	_	_
終局荷重	Pu	(kN)	229.42	237.97	265.57	308.93	206.71	219.68	244.71	37.17
終局変位	δυ	(mm)	1.73	1.48	1.52	1.39	2.69	1.90	1.79	0.48
初期剛性	K	(kN/mm)	224.00	219.64	220.71	262.06	219.73	207.77	225.65	18.67
降伏点回転角	δν	(mm)	0.93	1.06	1.18	1.15	0.86	1.02	1.03	0.12
塑性率	μ		1.85	1.40	1.29	1.21	3.13	1.87	1.79	0.71
構造特性係数	Ds		0.61	0.75	0.80	0.84	0.44	0.60	0.67	0.15
0.1 · Pmax		(kN)	23.17	24.01	25.26	28.60	22.03	21.75	24.14	2.54
0.1・Pmax 時の変位		(mm)	0.04	0.07	0.08	0.07	0.04	0.05	0.06	0.02
0.4 · Pmax		(kN)	92.69	96.04	101.03	114.38	88.13	86.99	96.54	10.15
0.4・Pmax 時の変位		(mm)	0.35	0.43	0.42	0.39	0.34	0.36	0.38	0.04
0.9 · Pmax		(kN)	208.55	216.09	227.32	257.36	198.29	195.73	217.22	22.84
0.9・Pmax 時の変位		(mm)	0.94	0.99	1.01	0.96	0.91	0.90	0.95	0.04
特定変位時の荷重 P	1mm 時の P	(kN)	216.66	218.02	225.78	265.16	210.91	208.09	224.10	21.03
	2mm 時の P	(kN)	_	_	222.08	_	205.18	_	_	_
	3mm 時の P	(kN)	_	_	_	_	_	_	_	_
	5mm 時の P	(kN)	_	_		_	-	_		_
	7mm 時の P	(kN)	_	_	-	_	-	_	-	_
	10mm 時の P	(kN)	_	_	_	_	_	_	_	_
	20mm 時の P	(kN)	_	_	_	_	_	_	_	_
	30mm 時の P	(kN)	_	_	_	_	_	_	_	_

表 3.2.3-13b 最大荷重(95%下限値)・短期基準引張耐力(95%下限値)・基準剛性(50%下限値)の算定

	Pmax	Ру	2/3·Pmax	初期剛性 K	Pu×(0.2/Ds)	3mm 時の P
					(参考)	(参考)
No1 試験体	231.73	_	154.48	224.00	75.53	_
No2 試験体	240.10		160.07	219.64	63.69	_
No3 試験体	252.58	_	168.38	220.71	66.75	_
No4 試験体	285.95		190.63	262.06	73.62	_
No5 試験体	220.33	164.59	146.88	219.73	94.83	_
No6 試験体	217.48	_	144.98	207.77	72.84	_
試験体数 n	6	6	6	6	6	6
試験体数 n による係数 k	2.336	2.336	2.336	0.297	2.336	2.336
平均值	241.4		160.9	225.7	74.54	_
標準偏差	25.38	_	16.92	18.67	10.91	_
変動係数 CV	0.105	1	0.105	0.083	0.146	_
ばらつき係数	0.75		0.75	0.98	0.66	_
基準最大耐力 Pmaxo	182.06	_	_	_		_
短期基準引張耐力 Po		_	121.38	_	49.07	_
基準剛性 Ko	_		_	220.11	_	_

表 3.2.3-14a 繊維直交方向引張試験結果 (D-3)

<i></i>	-10 ± 100 η	701FF	474144	1 45.CH (1.45.C	41H214 (-	<i>-</i>			
		No1	No2	No3	No4	No5	No6	平均	標準偏差
Pmax	(kN)	180.38	190.05	192.85	205.55	191.30	173.20	188.89	11.13
2/3·Pmax	(kN)	120.25	126.70	128.57	137.03	127.53	115.47	125.93	7.42
δmax	(mm)	2.47	2.43	2.38	2.64	2.39	2.58	2.48	0.11
Py	(kN)	102.43	108.59	105.72	118.39	104.81	98.81	106.46	6.70
бу	(mm)	0.85	0.85	0.78	0.92	0.80	0.84	0.84	0.05
Pu	(kN)	160.81	173.16	174.78	189.71	171.26	156.19	170.99	11.77
δυ	(mm)	6.28	4.84	4.86	4.89	6.27	5.74	5.48	0.70
K	(kN/mm)	123.92	132.26	137.13	131.38	133.71	121.36	129.96	6.05
δν	(mm)	1.33	1.35	1.29	1.47	1.30	1.32	1.35	0.07
μ		4.71	3.58	3.76	3.32	4.81	4.34	4.09	0.62
Ds		0.34	0.40	0.39	0.42	0.34	0.36	0.38	0.03
	(kN)	18.04	19.01	19.29	20.56	19.13	17.32	18.89	1.11
	(mm)	0.12	0.12	0.12	0.13	0.13	0.12	0.12	0.01
	(kN)	72.15	76.02	77.14	82.22	76.52	69.28	75.56	4.45
	(mm)	0.56	0.55	0.54	0.60	0.55	0.55	0.56	0.02
	(kN)	162.34	171.05	173.57	185.00	172.17	155.88	170.00	10.01
	(mm)	1.73	1.70	1.60	1.76	1.59	1.71	1.68	0.07
1mm 時の P	(kN)	116.96	124.02	128.36	127.18	126.18	113.04	122.62	6.20
2mm 時の P	(kN)	173.99	183.65	188.87	196.52	187.68	166.73	182.91	10.82
3mm 時の P	(kN)	177.49	183.66	185.73	202.89	186.20	170.59	184.43	10.82
5mm 時の P	(kN)	144.67	146.17	147.22	161.91	155.50	136.73	148.70	8.82
7mm 時の P	(kN)	141.23	-	-	154.01	148.16	132.34	_	_
10mm 時の P	(kN)	_	-	1	_	_	-	_	-
20mm 時の P	(kN)	_	-	1	_	_	-	_	-
30mm 時の P	(kN)	_	-	_	_	_	-	_	_
	Pmax 2/3・Pmax 6max Py 6y Pu 6u K 6v μ Ds 1mm 時の P 2mm 時の P 5mm 時の P 7mm 時の P 10mm 時の P 20mm 時の P	Pmax (kN) 2/3・Pmax (kN) 6max (mm) Py (kN) 6y (mm) Pu (kN) 6u (mm) K (kN/mm) 6v (mm) µ Ds (kN) (mm) (mm) (kN) (mm) (mm) (kN) (mm) (mm) (kN) (mm) (kN) (mm) (kN) (mm) (mm) (mm) (kN) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (m	No1 Pmax (kN) 180.38 2/3・Pmax (kN) 120.25 6max (mm) 2.47 Py (kN) 102.43 бу (mm) 0.85 Pu (kN) 160.81 би (mm) 6.28 K (kN/mm) 123.92 бv (mm) 1.33 µ 4.71 1 Ds (kN) 18.04 (mm) 0.12 (kN) 72.15 (mm) 0.56 (kN) 162.34 (mm) 1.73 1 1.73 1mm 時のP (kN) 177.49 5mm 時のP (kN) 177.49 5mm 時のP (kN) 141.23 10mm 時のP (kN) - 20mm 時のP (kN) - 20mm 時のP (kN) -	No1 No2	No1 No2 No3	No1 No2 No3 No4 Pmax (kN) 180.38 190.05 192.85 205.55 2/3・Pmax (kN) 120.25 126.70 128.57 137.03	No1 No2 No3 No4 No5 Pmax (kN) 180.38 190.05 192.85 205.55 191.30 2/3 · Pmax (kN) 120.25 126.70 128.57 137.03 127.53 8max (mm) 2.47 2.43 2.38 2.64 2.39 2.48 2.38 2.64 2.39 2.38 2.64 2.39 2.48 2.38 2.64 2.39 2.48 2.38 2.64 2.39 2.48 2.38 2.64 2.39 2.48 2.38 2.64 2.39 2.48 2.38 2.64 2.39 2.48 2.38 2.64 2.39 2.48 2.38 2.64 2.39 2.48 2.38 2.64 2.39 2.48 2.38 2.64 2.39 2.48 2.38 2.64 2.39 2.48 2.38 2.64 2.39 2.38 2.64 2.39 2.38 2.64 2.39 2.38 2.64 2.39 2.48 2.38 2.64 2.39 2.48 2.38 2.64 2.39 2.38 2.64 2.39 2.38 2.64 2.39 2.38 2.64 2.39 2.38 2.64 2.39 2.38 2.64 2.39 2.38 2.64 2.39 2.38 2.64 2.39 2.38 2.64 2.39 2.38 2.64 2.39 2.38 2.64 2.39 2.38 2.28 2.38 2.38 2.64 2.39 2.38 2.38 2.28 2.38 2.38	No1 No2 No3 No4 No5 No6 Pmax (kN) 180.38 190.05 192.85 205.55 191.30 173.20 123.79 123.70 124.70 128.77 137.03 127.53 115.47 124.70 124.70 128.77 137.03 127.53 115.47 124.70 124.70 128.77 137.03 127.53 115.47 124.70 124.70 128.70 128.39 104.81 98.81 124.70 108.59 105.72 118.39 104.81 98.81 124.70 124.7	Pmax

表 3.2.3-14b 最大荷重(95%下限値)・短期基準引張耐力(95%下限値)・基準剛性(50%下限値)の算定

	Pmax	Ру	2/3·Pmax	初期剛性 K	Pu×(0.2/Ds) (参考)	3mm 時の P (参考)
No1 試験体	180.38	102.43	120.25	123.92	93.35	177.49
No2 試験体	190.05	108.59	126.70	132.26	85.90	183.66
No3 試験体	192.85	105.72	128.57	137.13	89.25	185.73
No4 試験体	205.55	118.39	137.03	131.38	90.11	202.89
No5 試験体	191.30	104.81	127.53	133.71	100.60	186.20
No6 試験体	173.20	98.81	115.47	121.36	86.62	170.59
試験体数 n	6	6	6	6	6	6
試験体数 n による係数 k	2.336	2.336	2.336	0.297	2.336	2.336
平均値	188.9	106.5	125.9	130.0	90.97	_
標準偏差	11.13	6.70	7.42	6.05	5.42	_
変動係数 CV	0.059	0.063	0.059	0.047	0.060	_
ばらつき係数	0.86	0.85	0.86	0.99	0.86	_
基準最大耐力 Pmaxo	162.89	_	_	_	_	_
短期基準引張耐力 Po	_	90.79	108.60	_	78.32	_
基準剛性 Ko	_	_	_	128.16	_	_

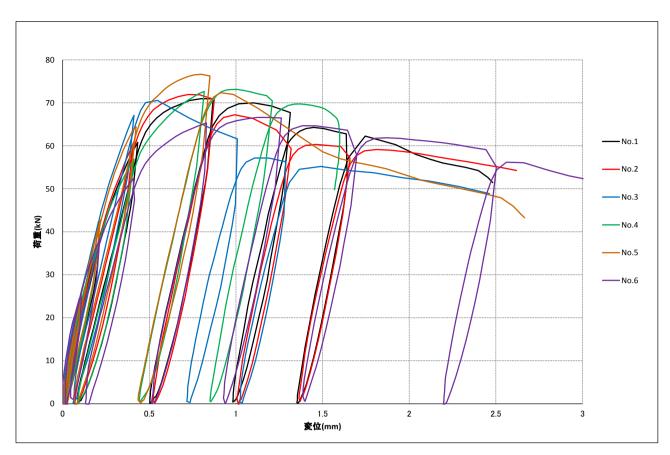


図 3.2.3-1 荷重と変位の関係 繰り返し履歴線(A-1:繊維平行方向、φ25.4、スギLVL A種)

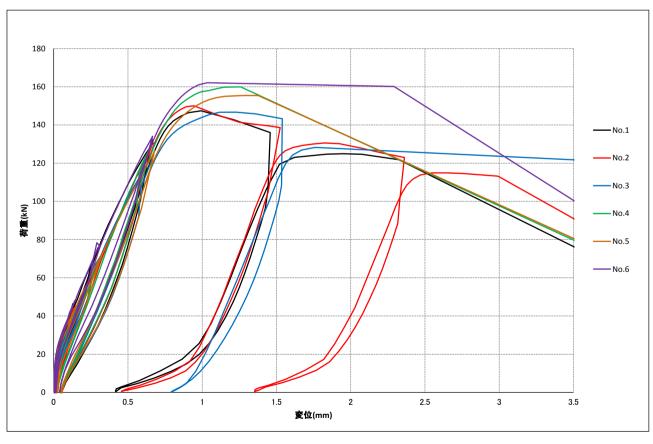


図 3.2.3-2 荷重と変位の関係 繰り返し履歴線(A-2:繊維平行方向、φ25.4、スギ LVL A種)

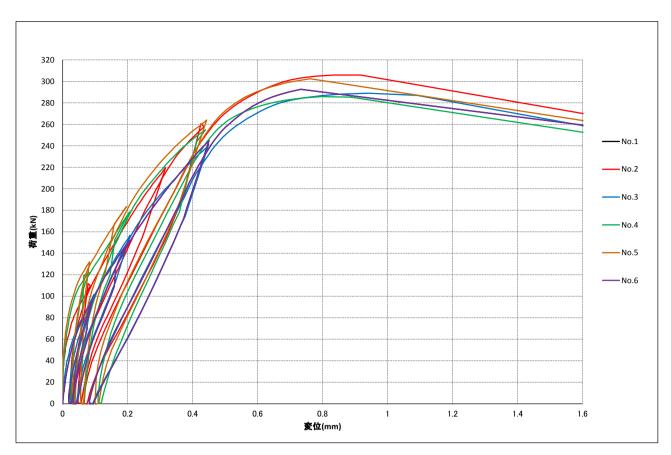


図 3.2.3-3 荷重と変位の関係 繰り返し履歴線(A-3:繊維平行方向、φ25.4、スギ LVL A種)

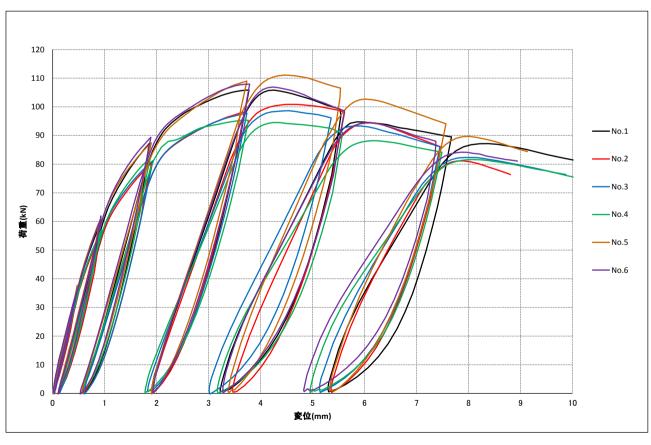


図 3.2.3-4 荷重と変位の関係 繰り返し履歴線(A-4:繊維直交方向、φ25.4、スギ LVL A 種)

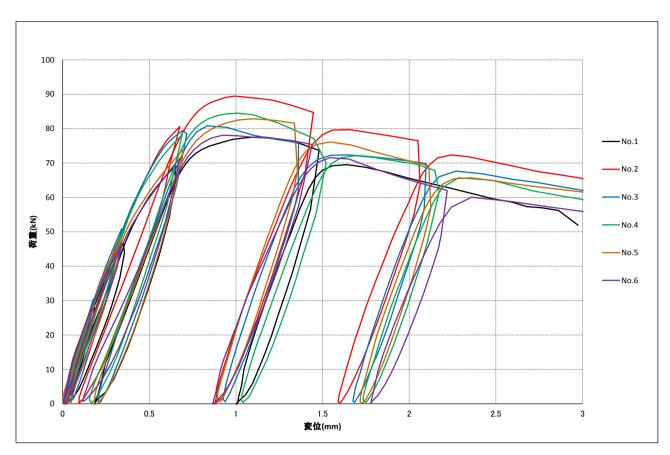


図 3.2.3-5 荷重と変位の関係 繰り返し履歴線(B-1:繊維平行方向、φ25.4、スギ LVL B種)

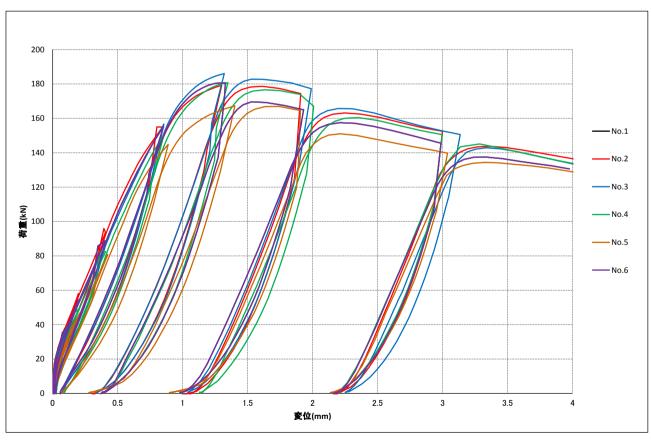


図 3.2.3-6 荷重と変位の関係 繰り返し履歴線(B-2:繊維平行方向、φ25.4、スギ LVL B種)

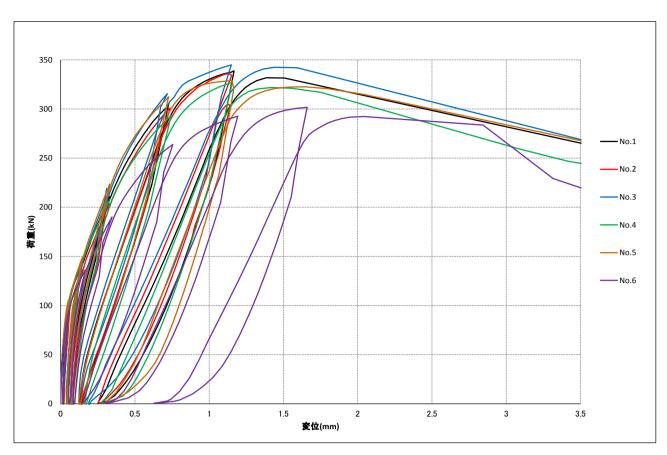


図 3.2.3-7 荷重と変位の関係 繰り返し履歴線(B-3:繊維平行方向、φ25.4、スギ LVL B種)

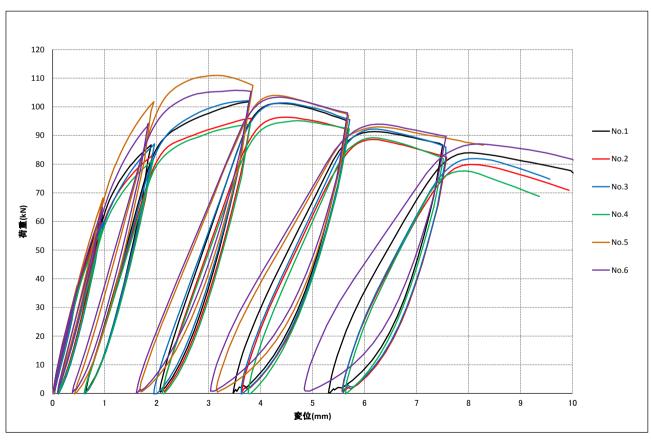


図 3.2.3-8 荷重と変位の関係 繰り返し履歴線(B-4:繊維平行方向、φ25.4、スギ LVL B種)

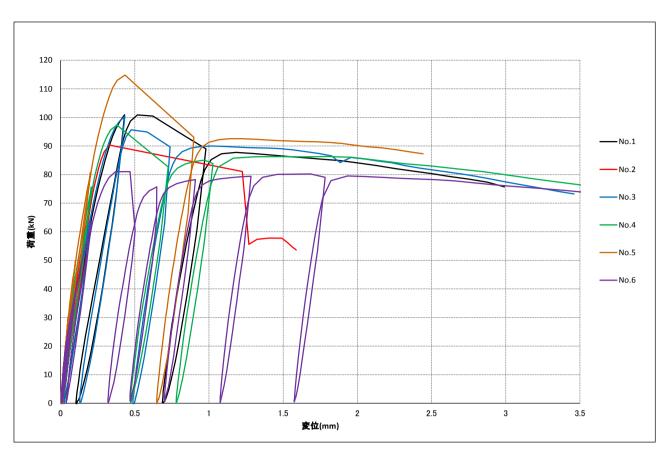


図 3.2.3-9 荷重と変位の関係 繰り返し履歴線(C-1:繊維平行方向、φ35、カラマツ LVL A種)

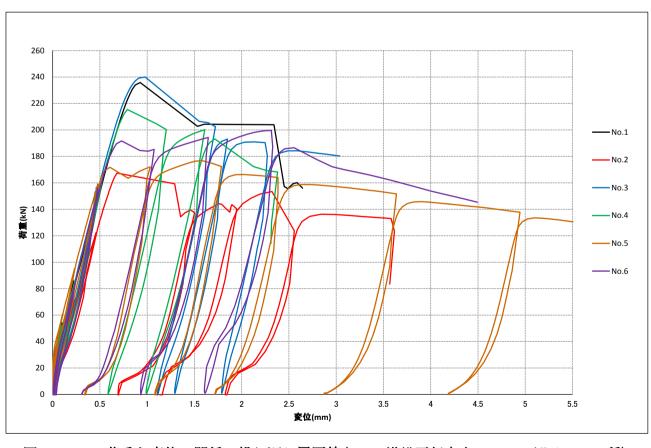


図 3.2.3-10 荷重と変位の関係 繰り返し履歴線(C-2:繊維平行方向、φ35、カラマツLVL A種)

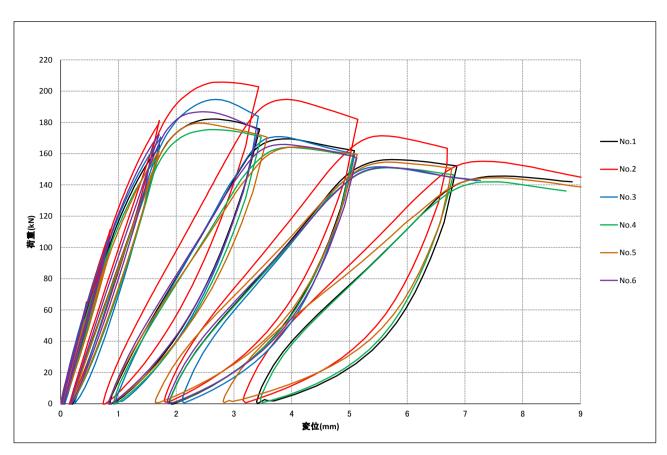


図 3.2.3-11 荷重と変位の関係 繰り返し履歴線(C-3:繊維直交方向、φ35、カラマツLVL A種)

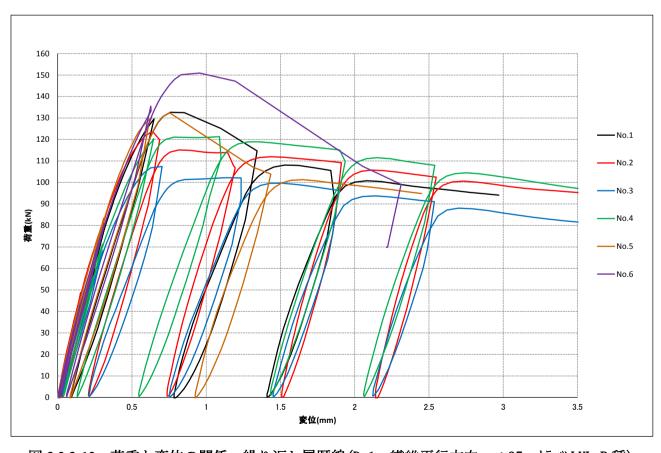


図 3.2.3-12 荷重と変位の関係 繰り返し履歴線(D-1:繊維平行方向、φ35、カラマツLVL B種)

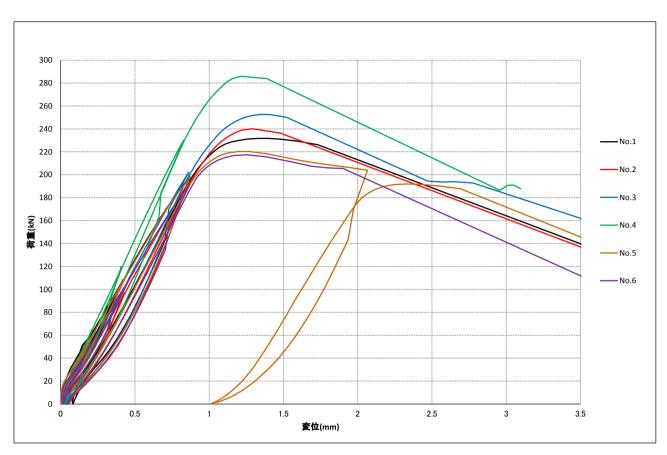


図 3.2.3-13 荷重と変位の関係 繰り返し履歴線(D-2:繊維平行方向、φ35、カラマツLVL B種)

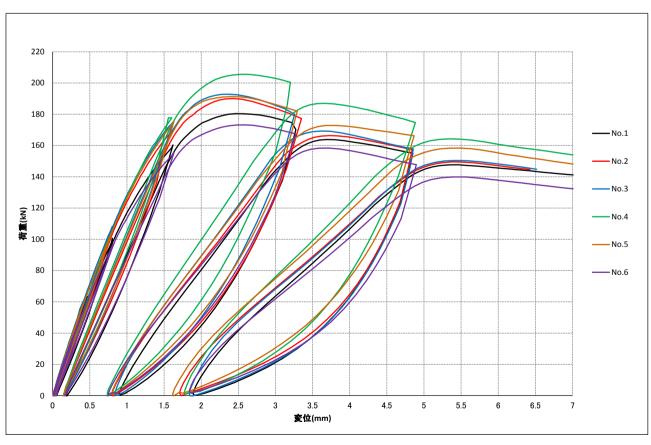


図 3.2.3-14 荷重と変位の関係 繰り返し履歴線(D-3:繊維直交方向、φ35、カラマツ LVL B種)

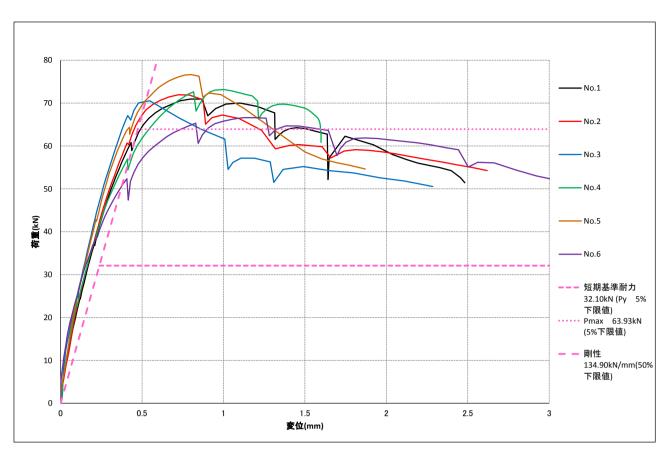


図 3.2.3-15 荷重と変位の関係 包絡線(A-1:繊維平行方向、φ25.4、スギ LVL A種)

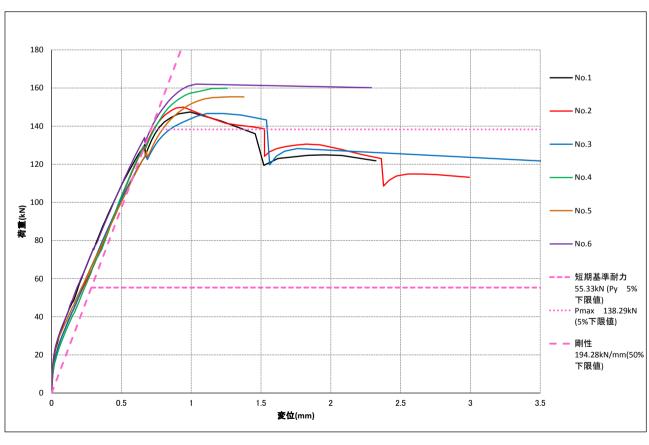


図 3.2.3-16 荷重と変位の関係 包絡線(A-2:繊維平行方向、φ25.4、スギ LVL A種)

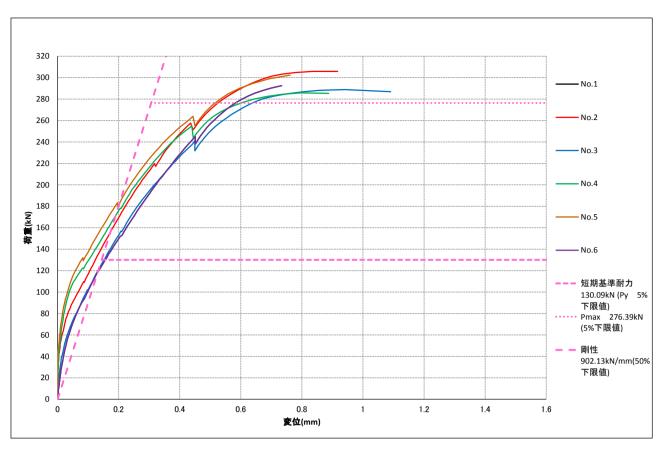


図 3.2.3-17 荷重と変位の関係 包絡線(A-3:繊維平行方向、φ25.4、スギ LVL A種)

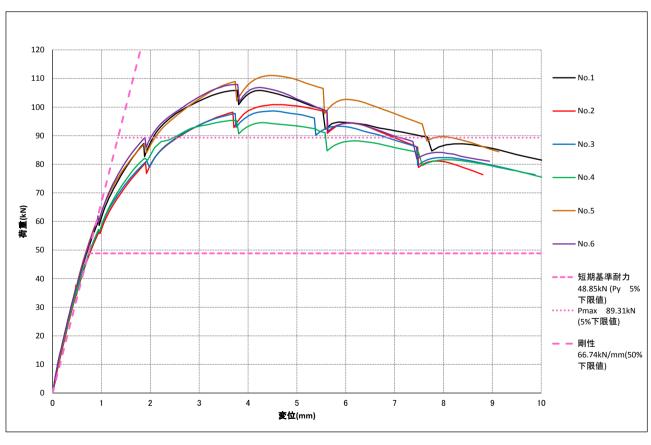


図 3.2.3-18 荷重と変位の関係 包絡線(A-4:繊維直交方向、φ25.4、スギ LVL A 種)

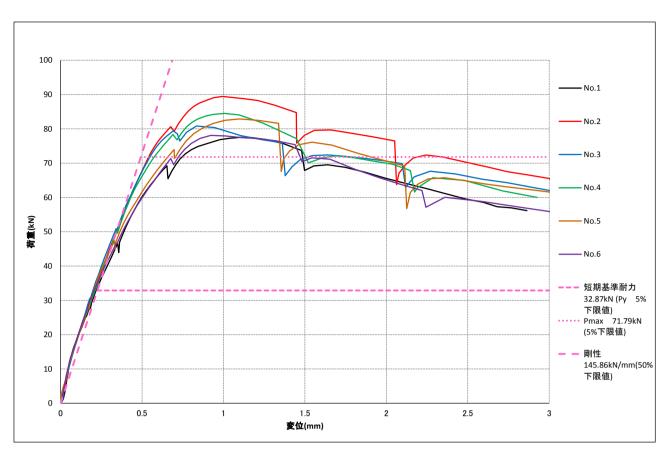


図 3.2.3-19 荷重と変位の関係 包絡線(B-1:繊維平行方向、φ25.4、スギ LVL B種)

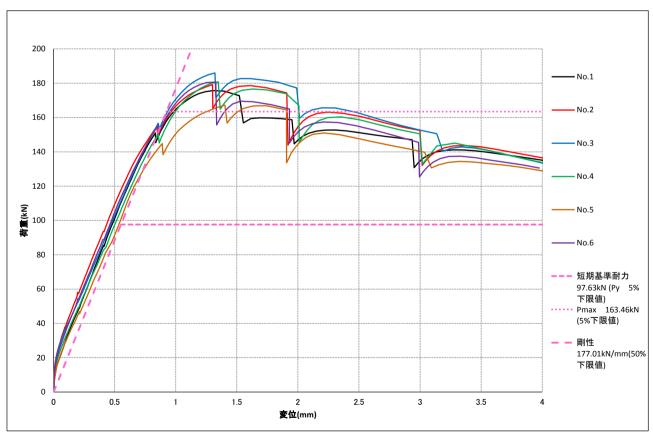


図 3.2.3-20 荷重と変位の関係 包絡線 (B-2:繊維平行方向、 φ 25.4、スギ LVL B 種)

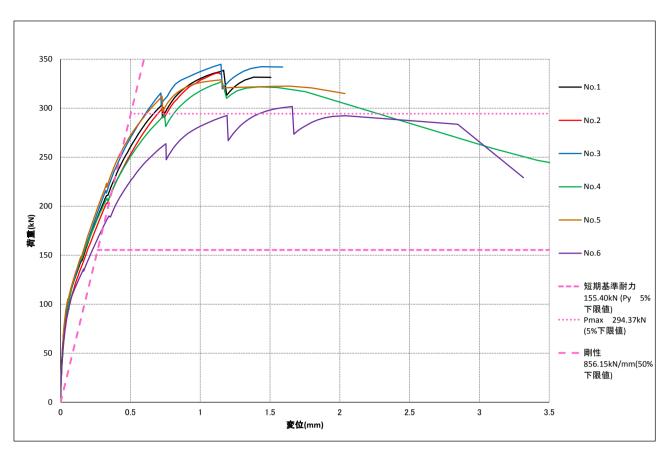


図 3.2.3-21 荷重と変位の関係 包絡線(B-3:繊維平行方向、φ25.4、スギ LVL B種)

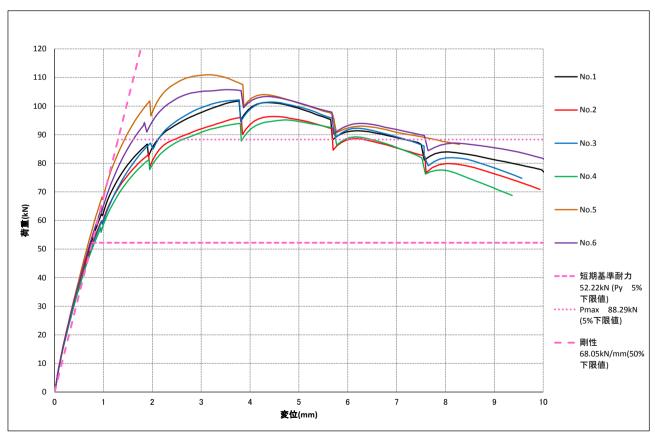


図 3.2.3-22 荷重と変位の関係 包絡線(B-4:繊維直交方向、φ25.4、スギ LVL B種)

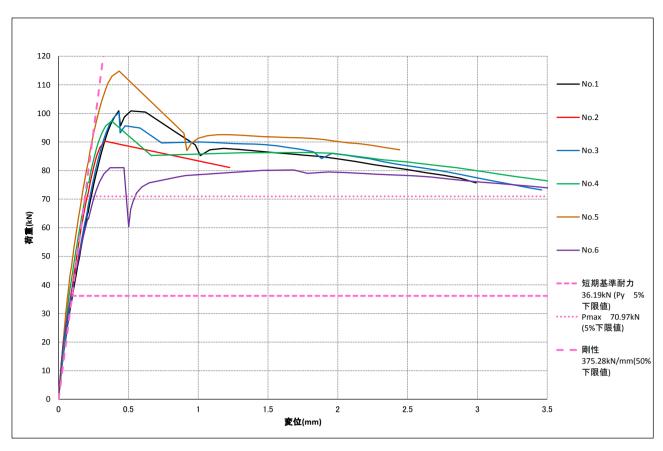


図 3.2.3-23 荷重と変位の関係 包絡線(C-1:繊維平行方向、φ35、スギ LVL A種)

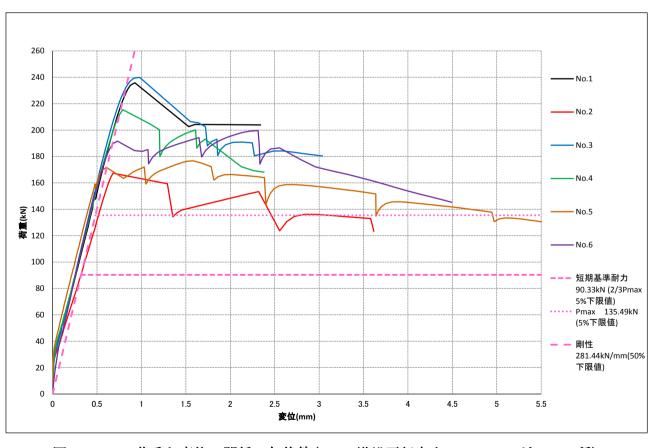


図 3.2.3-24 荷重と変位の関係 包絡線(C-2:繊維平行方向、φ35、スギ LVL A種)

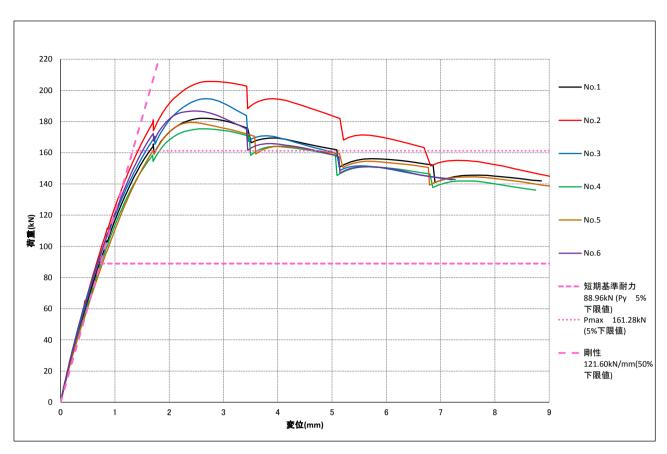


図 3.2.3-25 荷重と変位の関係 包絡線(C-3:繊維直交方向、φ35、スギ LVL A種)

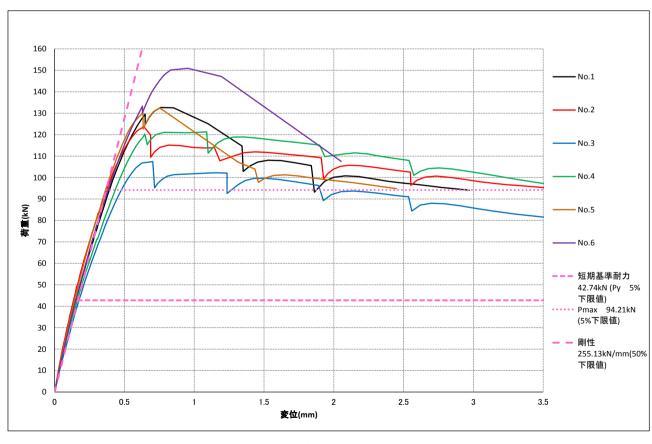


図 3.2.3-26 荷重と変位の関係 包絡線(D-1:繊維平行方向、φ35、スギ LVL B種)

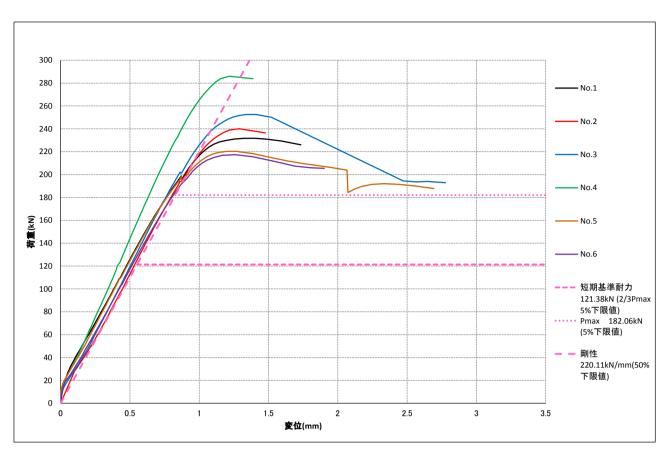


図 3.2.3-27 荷重と変位の関係 包絡線(D-2:繊維平行方向、φ35、スギ LVL B種)

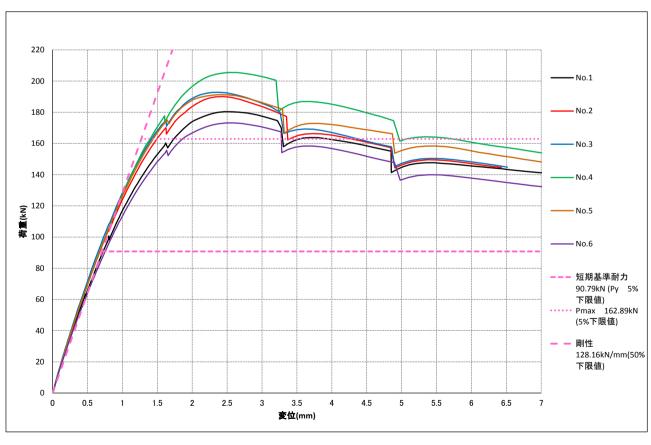


図 3.2.3-28 荷重と変位の関係 包絡線(D-3:繊維直交方向、φ35、スギ LVL B種)

表 3.2.3-15 試験体破壞状況

試験体名	樹種	荷重方向	試験体No.	破壊状況	試験体名	樹種	荷重方向	試験体No.	破壊状況
		No.1	LSBの抜け				No.1	LSBの抜け	
			No.2	LSBの抜け				No.2	LSBの抜け
A 1	A 1 7 +	木口方向	No.3	LSBの抜け	D 1	っゃ	+	No.3	LSBの抜け
A-1	スギ	不口万円	No.4	固定側LSBの抜け	B-1	スギ	木口方向	No.4	LSBの抜け
			No.5	LSBの抜け				No.5	LSBの抜け
			No.6	LSBの抜け				No.6	LSBの抜け
		No.1	LSBの抜け、バースト破壊				No.1	LSBの抜け	
			No.2	LSB抜け				No.2	LSBの抜け
A-2	スギ	木口方向	No.3	LSBの抜け、バースト破壊	B-2	スギ	木口方向	No.3	LSBの抜け
A-Z	^ +	不口万円	No.4	LSBの抜け、バースト破壊	D-7	^ +	本口万间	No.4	LSBの抜け
			No.5	LSBの抜け、バースト破壊				No.5	LSBの抜け
			No.6	LSBの抜け、バースト破壊				No.6	LSBの抜け
			No.1	LSBの抜け、バースト破壊				No.1	LSBの抜け、バースト破壊
			No.2	LSBの抜け、バースト破壊				No.2	固定側LSBの抜け
A-3	スギ	木口方向	No.3	LSBの抜け、バースト破壊	B-3	スギ	木口方向	No.3	LSBの抜け、バースト破壊
A-9	^ +	本口方向	No.4	LSBの抜け、バースト破壊	Б-9	**	水口 万间	No.4	LSBの抜け、バースト破壊
			No.5	LSBの抜け、バースト破壊				No.5	LSBの抜け、バースト破壊
			No.6	LSBの抜け、バースト破壊				No.6	LSBの抜け、バースト破壊
			No.1	LSBの抜け	B-4	スギ		No.1	LSBの抜け
		積層方向	No.2	LSBの抜け				No.2	LSBの抜け
A-4	スギ		No.3	LSBの抜け			積層方向	No.3	LSBの抜け
11.4	70.1		No.4	LSBの抜け		7.1	1.民/日/ノバウ	No.4	LSBの抜け
			No.5	LSBの抜け				No.5	LSBの抜け
			No.6	LSBの抜け				No.6	LSBの抜け
			No.1	LSBの抜け		スギ	木口方向	No.1	LSBの抜け
			No.2	LSBの抜け				No.2	LSBの抜け
C-1	スギ	 木口方向	No.3	LSBの抜け	D-1			No.3	LSBの抜け
0.1	70.1	本口万円	No.4	LSBの抜け	D 1	7.1	7 H 77 F3	No.4	LSBの抜け
			No.5	LSBの抜け				No.5	LSBの抜け
			No.6	LSBの抜け				No.6	LSBの抜け
			No.1	LSBの抜け				No.1	LSBの抜け、バースト破壊
			No.2	LSBの抜け				No.2	LSBの抜け、バースト破壊
C-2	スギ	木口方向	No.3	LSBの抜け	D-2	スギ	木口方向	No.3	LSBの抜け、バースト破壊
02	70.1	N II / J I N	No.4	LSBの抜け	D 2	7.1	7 H 77 F3	No.4	LSBの抜け、バースト破壊
			No.5	LSBの抜け				No.5	LSBの抜け、バースト破壊
			No.6	LSBの抜け				No.6	LSBの抜け、バースト破壊
			No.1	LSBの抜け				No.1	LSBの抜け
			No.2	LSBの抜け	D-3		積層方向	No.2	LSBの抜け
C-3	スギ	積層方向	No.3	LSBの抜け		スギ		No.3	LSBの抜け
	23.1	IR IE 73 IF3	No.4	LSBの抜け				No.4	LSBの抜け
			No.5	LSBの抜け				No.5	LSBの抜け
			No.6	LSBの抜け				No.6	LSBの抜け

※バースト: LSB 打ち込み面の木口に向けて集成材の繊維方向に割裂が生じ LSB が抜け出る破壊

写真 3.2.3-1 破壊状況 (木口方向引張試験) LSB1 本 LSB の引抜け (シリンダー状破壊)

写真 3.2.3-2 破壊状況 (木口方向引張試験) LSB2 本 LSB の引抜け (シリンダー状破壊)

写真 3.2.3-3 破壊状況 (木口方向引張試験) LSB2 本 LSB の引抜け (バースト破壊)

写真 3.2.3-4 破壊状況 (木口方向引張試験) LSB4 本 LSB の引抜け (バースト破壊)

写真 3.2.3-5 破壊状況 (木口方向引張試験) LSB1 本 固定側 LSB の引抜け

写真 3.2.3-6 破壊状況 (木口方向引張試験) LSB4 本 固定側 LSB の引抜け

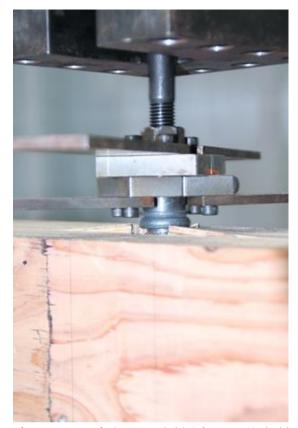


写真 3.2.3-7 破壊状況 (積層方向引張試験) LSB の引抜け

3.2.4. 結果まとめ

試験体仕様毎の最大引抜耐力(5%下限値)及び短期基準引張耐力(5%下限値)、基準剛性(50%下限値)を表 3.2.4-1 に示す。

表 3.2.4-1 試験結果まとめ

試験体名	樹種	荷重方向	LSB名称	試験体数	最大引抜耐力 (5%下限値) (kN)	短期基準引張耐力 (5%下限値) (kN)	基準剛性 (50%下限値) (kN)	特記				
A-1				6	63.93	32.10	184.90	LSB 1	1本			
A-2		木口方向		6	138.29	55.33	194.28	LSB 2	2本			
A-3				6	276.39	130.09	902.13	LSB 4	4本			
A-4		積層方向	HLS-20-450-M16	6	89.31	48.85	66.74	LSB 1	1本			
B-1			HLS-20-450-M16	6	71.79	32.87	145.85	LSB 1	1本			
B-2		木口方向		6	163.46	97.63	177.01	LSB 2	2本			
B-3	スギ			6	294.37	155.40	856.15	LSB 4	4本			
B-4	74	積層方向		6	88.29	52.22	68.05	LSB 1	1本			
C-1		未口去的		6	70.97	36.19	375.28	LSB 1	1本			
C-2		木口方向	小 日力问	小 口刀间	水口刀间		6	135.49	90.33	281.44	LSB 2	2本
C-3		積層方向	HLS-27-541.5-M20	6	161.28	88.96	121.60	LSB 1	1本			
D-1			HLS-27-541.5-M20	6	94.21	42.74	255.13	LSB 1	1本			
D-2		小口刀円		6	182.06	121.38	220.11	LSB 2	2本			
D-3		積層方向		6	162.89	90.79	128.16	LSB 1	1本			

[※]試験体 C-2、D-2 については、計測データの不具合により、短期基準耐力を 2/3Pmax の 5%下限値にて評価を行った。

3.3 無開口厚板壁版の構造性能の比較

本章の接合部要素試験および、前年度の調査 1)により、スギ、カラマツ材を用いた A 種または B 種の LSB,GIR 接合部の構造性能が把握され、これにより無開口厚板壁版の短期許容応力としてのせん断性能を予測する見通しがたった。耐力壁の短期許容せん断応力は、以下の要因により決定される。

- (A) 柱脚モーメントに抵抗するための、柱脚接合部の引張耐力
- (B) 壁版のせん断性能
- (C) 壁版と柱脚の成分を合算した水平剛性
- (D) 柱脚接合具及び付随するアンカーボルトの靭性

本項では、議論を簡略化するために(A)柱脚の引張 による水平せん断性能のみを算定する。ただし、(D) 靭性確保のために柱脚接合部は GIR, LSB 接合具とアンカーボルトを直列バネとして併用した接合部とした。アンカーボルトの降伏応力が、脆性破壊が生じやすい GIR,LSB 接合具の $2/3P_{max}$ 以下となる設計とし、靭性のあるアンカーボルトを先行して降伏させる仕組みを想定する。

表 3.3-1 に、本報にて用いるアンカーボルトの降伏応力を一覧表でまとめた。壁版と接合工法ごとの最大の換算壁倍率を表 3.3-2 に、所定の換算壁倍率を満たす壁版ごとの接合具配置として、10 倍~20 倍の場合を表 3.3-3 に、20 倍以上の場合を表 3.3-4 に、接合具配置ごとの壁版の樹種・区分と換算壁倍率との関係を図 3.3-1 にまとめた。ここに、

2/3Pmax :接合具の信頼水準 75%の 5%下限値としての最大応力の 2/3

K :接合具の初期剛性の平均値

A BOLT: 降伏応力が 2/3P_{max}を下回るようなアンカーボルトの配置例

Py : A_BOLT の降伏応力

 P_a = P_y / (3×1.96) として算定した、換算壁倍率。

柱脚モーメントの応力中心間距離と加力点高さの比として3を想定

表 3.3-1 アンカーボルトの性能一覧

アンカーボ	軸断面積	SNR400	SNR400	SNR490	SNR490
ルト呼び径		降伏応力	降伏応力	降伏応力	降伏応力
	[mm ²]	[kN/1 本]	[kN/2 本]	[kN/1 本]	[kN/2 本]
M16	157	36.9	73.8	51.0	102.1
M20	245	57.6	115.2	79.6	159.3
M22	303	71.2	142.4	98.5	197.0
M24	353	83.0	165.9	114.7	229.5
M27	459	107.9	215.7	149.2	298.4

表 3.3-2 各壁版・各接合工法の換算壁倍率の最大値

樹種・区分	等級	接合具	2/3 P _{max}	K	A_BOLT	Py	Pa
			kN	kN/mm		kN	倍
スギ	60E-F225,	$2\text{-LSB}35\phi\text{_L445}$	90.3	281.4	2-M16_400	73.8	12.6
A種	35V-31H	$4\text{-}\mathrm{GIR}24\phi_\mathrm{L}300$	153.7	884.3	2-M22_400	142.4	24.2
スギ	50E-F130,	$2\text{-LSB}35\phi\text{_L445}$	121.4	220.1	2-M20_400	115.2	19.6
B種	30V-20H	$4\text{-}\mathrm{GIR}24\phi_\mathrm{L}300$	173.8	674.9	2-M24_400	165.9	28.2
カラマツ		$2\text{-LSB}35\phi\text{_L445}$	141.8	717.3	2-M20_400	115.2	19.6
A種		$2\text{-}\mathrm{GIR}24\phi_\mathrm{L}200$	111.0	579.3	2-M16_490	102.1	17.4
カラマツ		$2\text{-LSB}35\phi\text{_L445}$	256.4	528.8	2-M24_490	229.5	39.0
B種		$4\text{-}\mathrm{GIR}24\phi_\mathrm{L}300$	216.5	815.7	2-M27_400	215.7	36.7

表 3.3-3 換算壁倍率 10 倍~20 倍となる各壁版の接合具配置一覧表

樹種・区分	等級	接合具	2/3 P _{max}	K	A_BOLT	Py	Pa
			kN	kN/mm		kN	倍
スギ	60E-F225,	2 -LSB35 ϕ _L445	90.3	281.4	2-M16_400	73.8	12.6
A種	35V-31H	$2\text{-}GIR24\phi$ _L300	120.5	578.5	2-M20_400	115.2	19.6
スギ	50E-F130,	2 -LSB35 ϕ _L445	121.4	220.1	2-M20_400	115.2	19.6
B種	30V-20H	$2\text{-}GIR24\phi$ _L300	111.1	674.9	2-M16_490	102.1	17.4
カラマツ		$1\text{-LSB}35\phi\text{_L445}$	84.3	380.7	1-M20_490	79.6	13.5
A種		$1\text{-}\mathrm{GIR}24\phi_\mathrm{L}300$	76.3	299.7	1-M22_400	71.2	12.1
カラマツ		$1\text{-LSB}35\phi\text{L}445$	112.6	297.9	2-M16_490	102.1	17.4
B種		$1\text{-}\mathrm{GIR}24\phi_\mathrm{L}300$	92.0	255.4	1-M20_490	79.6	13.5

表 3.3-4 換算壁倍率 20 倍以上となる各壁版の接合具配置一覧表

樹種・区分	等級	接合具	2/3 P _{max}	K	A_BOLT	P_y	Pa	
			kN	kN/mm		kN	倍	
スギ	60E-F225,	(該当なし)						
A種	35V-31H	$4\text{-}\mathrm{GIR}24\phi_\mathrm{L}300$	153.7	884.3	2-M22_400	142.4	24.2	
スギ	50E-F130,	(該当なし)						
B種	30V-20H	$4\text{-}\mathrm{GIR}24\phi_\mathrm{L}300$	173.8	674.9	2-M24_400	165.9	28.2	
カラマツ		(該当なし)						
A種		(該当なし)						
カラマツ		$2\text{-LSB}35\phi\text{_L445}$	256.4	528.8	2-M24_490	229.5	39.0	
B種		$2\text{-}GIR24\phi$ _L300	166.4	622.4	2-M22_400	142.4	24.2	

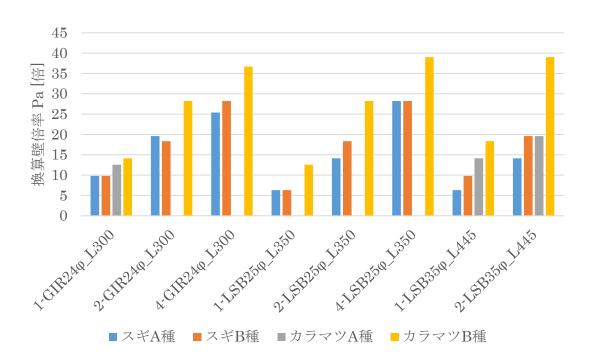


図 3.3-1 接合具配置ごとの壁版の樹種・区分と換算壁倍率の比較

注)カラマツA種は、図中全ての接合部配置についての試験データは揃っていない。

まとめ

本章では接合部の要素試験より、ばらつきを含めた各接合部の最大耐力を求めた。また その結果を用いて、幅 1000mm×加力高さ 2400mm×厚 150mm の無開口厚板壁版の構造 性能を予測し、樹種や等級の区分、接合具の組み合わせに対する換算壁倍率を試算した。

しかしながら、アンカーボルトの伸びを考慮した耐力壁としての壁板全体の靭性や剛性の評価は実施されていない。また、本章では壁版の寸法を一定とした場合を想定したが、普及のためには任意の寸法に対しての性能が評価可能であることが望ましい。以上の点に関しては、今後の調査研究が待たれる。

汝献

1) 平成 26 年度 CLT 等新たな製品・技術の開発促進事業のうち中高層建築物等に係る技術開発等の促進 (CLT 等接合部データの収集) 事業報告書 , 一般社団法人全国 LVL 協会 , 2015.03

4 厚板 LVL 意匠

4.1 なぜ穴あき加工か

木層ウォールは LVL の厚板を用いた壁工法であり、これまで一時間準耐火構造の外壁の大臣認定を取得するなど、開発が進められてきた。鉛直荷重を負担しない外壁としての仕様(木層ウォール 60、木層ウォール 30)のほか、鉛直力も負担する壁構造として使用できる仕様(木層ウォール 60V)などがあり、構造としての性能を最大化し、耐火性能をもたせるために、LVL の厚板そのものは構造金物を取り付けたり、遮炎性を上げるためのさね材を入れるなどのほかは、LVL の厚板そのままのかたちで用いられてきた。

図 4.1-1 みやむら動物病院(左:外観、右:1階待合 内観)

しかしながら、今後のさらなる木層ウォールの普及のためには、構造体力上有利な無関口のLVLパネルを使用したものだけでなく、設備貫通のためのLVLパネルへの穴あけがもたらす構造への影響の評価や基準づくりをしながら、様々な開口をもち、光、風、設備などを通しながら、構造的にも有効に働くさらに進んだ木層ウォール「有孔木層ウォール」の開発が必要となる。

図 4.1-2 有孔木層ウォールの使用例(イメージパース)

今回は大型木造の地震力を負担する抵抗要素としての「有孔木層ウォール」の開発のため、「どのような開口のパターンがありえ、それを計画、計算するためにどのような開口を切削、構造実験すればいいか」(4.2 開口パターン)、「大判かつ厚みがあり、また接着剤などの影響で加工しにくいと言われている LVL をロボットアームを用いて加工してみる」(4.3 木層ウォールのロボット切削加工について)、「構造実験を通じてどのような破壊が生じるかを確認し、評価する」(4.4 構造実験の結果)といったことを通じ、有孔木層ウォールの開発の有効性と今後の可能性を検討してみる。

4.2 開口パターン

本年度の事業においては、開口パターンの多様性を検討すると同時に、構造解析における基本的な入力モデルの応答と試験結果との整合を検証することを目的として図 $4.2.1\sim4.2.4$ の試験体図中の $E-2\sim E-8$ に示すように7種の開口パターンを設定した。

単純な矩形グリッド上に断面を残した E-8 とそのバリエーションとしての E-2,E-4 を比較検討することにより、挙動の差異を浮かび上がらせることを目的とした。E-3 に て断面のグリッドを繊維方向に対して傾斜させることで、直交異方性を持つ木質材料の 特性を調査する。

同時に意匠性も考慮し、三角形と四角形との反復により構成されるグリッドの採用も検討した。そのグリッド芯に図形を配置したものが E-6,E-7 であり、更に加工の自由度の高さを生かして板厚方向の切削形状を変化させたものが E-5 である。

試験目的

木層ウォールの水平せん断力に対する破壊モードとしては、

- ・パネル本体の曲げ・せん断の複合応力による脆性破壊
- ・柱脚の接合金物の破断による破壊

以上の2種類が想定される。無開口版の試験体と、様々なバリエーションの有開口版試験 体の剛性及び破壊モードを比較する。次に、有限要素解析による数値計算により応力分布 及びせん断剛性を算定し、解析モデルと試験体との整合性を検証する。

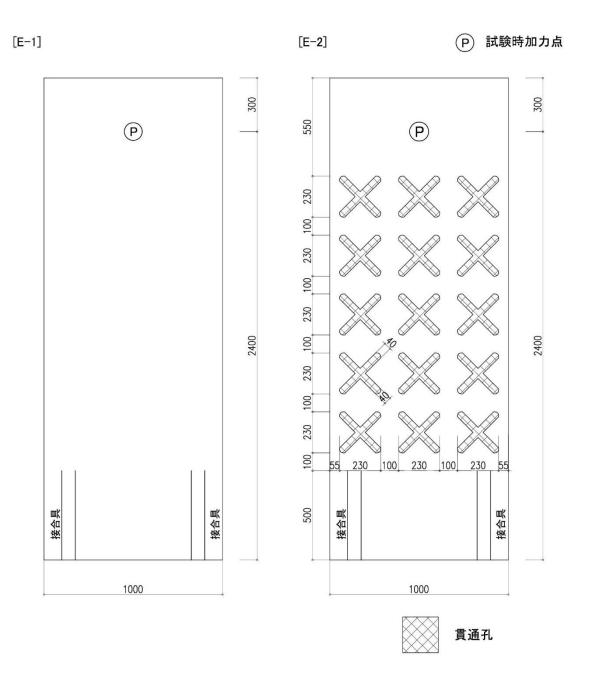


図 4.2.1 開口パターンと水平せん断試験体概略

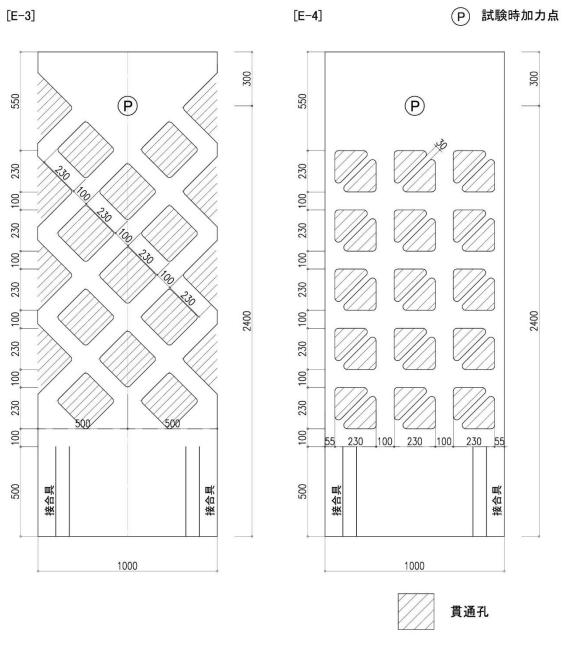


図 4.2.2 開口パターンと水平せん断試験体概略

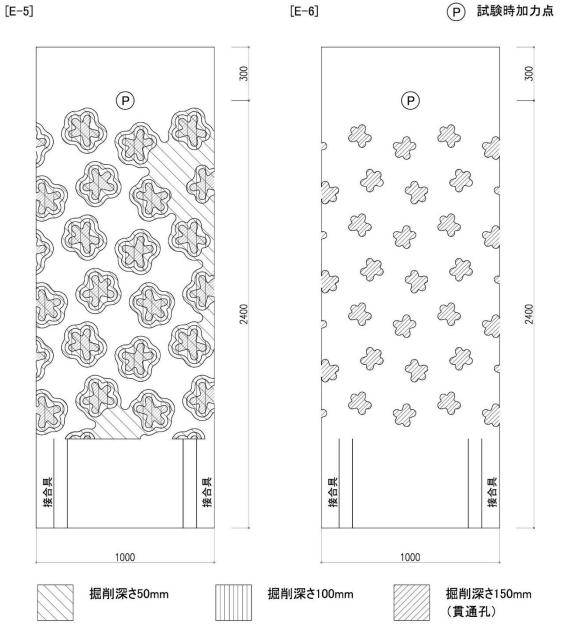


図 4.2.3 開口パターンと水平せん断試験体概略

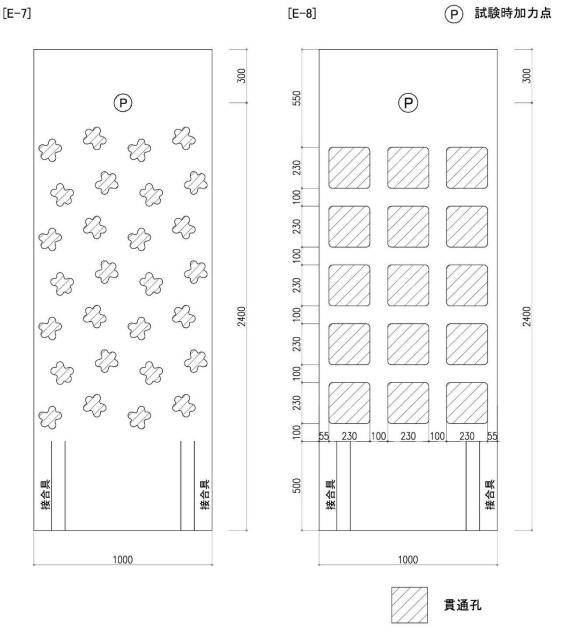


図 4.2.4 開口パターンと水平せん断試験体概略

4.3 木層ウォールのロボット切削加工について

4.3.1 ロボット加工技術の背景

近年、世界では推定 120 万台の産業用ロボットが稼働中だという。しかも、そのうちの 4 分の 1 にあたる約 30 万台が日本で稼働している。実のところ、日本はロボット大国なの である。そして、この大部分のロボットは、製造業の分野で活躍するロボットだとされて いる。では、これらのロボットはいったいどのような役割を担ってきたのか。その主たる 仕事が搬送に関わる作業だ。マテリアルハンドリング (material handling) と呼ばれる工程で、自動化設備の運搬管理を担う作業である。例えば、重いものを持ち上げ、次の加工作業場所へ移動するなどといった、繰り返しの重労働を人に代わって行っている。

一方で、切削をはじめとする精密な加工作業においては、ロボットの活用事例は少なく、CNC 工作機械が用いられてきた。CNC 工作機械とは、コンピュータ数値制御(Computer Numerical Control)技術を用いて、工具の移動量や移動速度などを制御する機械である。これに対し、数値制御(NC)の機能を持たないロボットは、逆運動学計算のアルゴリズムに基づいて運動を行うため、作業精度に誤差があるものとされてきた。精度の高い CNC 工作機械とは作業の役割が区分されているのである。そのためロボットは、一般的に製造業の加工作業を担う機会はあまりなかったのが実状であった。

しかし、今日のロボット技術は、進化の一途をたどっている。最新鋭の産業用ロボットは、100分台以上の反復精度を実現しているのだ。この産業用ロボット、その稼働台数は今後もますます増えるとの予想である。経済産業省と新エネルギー産業技術総合開発機構(NEDO)が2010年に発表した市場予測によれば、2020年には2.9兆円、2035年には9.7兆円までに成長すると推定されている。増加を続けるロボット人口、その精密かつ優れた機動力を、いよいよ切削加工の分野でも活躍できる時代が到来したと言っても過言ではないだろう。

4.3.2 木加工技術

4.3.2.1 木加工技術の現状

さて、木加工の機械切削の技術に着目してみると、1990年ごろから急速に普及したプレカット生産技術を主体とする専用機での画一的な加工アプローチが多くみられる。木造住宅の工業化の技法として、大きな立役者となった全自動化生産システムである。一方で、マルチカットソーなどを用いた単純な木加工は行われていても、木の特性を活かした3次元曲面などといった複雑な加工技術の事例は、未だ人の手による職人技に頼っているのが実状である。ロボットでの木加工技術を開発する上で、工作機械よる木加工技術の進化が鈍化傾向にあることも、念頭に入れておく必要があるだろう。

ロボット切削の木加工開発を進める中、もうひとつの大きなハードルがあった。それは LVL 切削に最適な工具の選定だ。エンドミルをはじめとする切削工具は、マシニングに適した金型加工技術を中心に発展してきている。そのため、日本に流通している工具の多くが、金属切削用の刃物が中心なのである。そこで今回は、日本市場だけでなく海外製品の評価も視野に含め、刃物開発選定に着手した。

4.3.2.2 LVL 加工に求められるもの

単板積層材(以降 LVL: Laminated Veneer Lumber)は、強度、耐久性、寸法安定性を持った、優れた素材である。その一方で、切削加工工程においていくつかの大きな問題点を抱えていた。LVL 材の特徴と問題点を踏まえ、これを生かし、解決するために下記の観点から総合的な開発を進めた。

- ・全長 12m に及ぶ材料生産が可能な木質素材であり、その長さを生かした切削加工が求められていた。そのため、レールを用いたロボット切削加工機を開発した。
- ・大断面の木質材料(最大:幅1200mm厚さ600mm)であり、かつ単板を繊維方向に揃えて積層接着した木質材料であるため、接着材の含有量が多い。よって、刃物の鈍化が顕著で切削に厳しい。そのため、LVLに特化した大型刃物の開発が求められた。
- ・以上を踏まえ、ロボット切削加工を可能にする運動制御言語、切削条件の開発を行った。

4.3.3 ロボット加工環境の設計

4.3.3.1 切削ロボットの選定

産業用ロボットは、安川電機、ファナック、川崎重工、ABB(スイス)、KUKA(ドイツ)など、国内外様々なメーカーが挙げられるが、本プロジェクトでは KUKA 社製のロボットを使用している。その大きな理由が、反復精度、軌跡精度、機械剛性が高い点である。とりわけ、位置繰り返し精度が 100 分台以上の反復精度を実現している。

位置繰り返し精度とは、最初にスタート点を正確に決定し、ロボット作業が終わり再び 同じ教示点へ戻ってきた際の位置再現精度を表したものである。また、軌跡精度とは、速 度などの変化による軌跡線の精度を表したものである。これらの数値が小さいほど、より 正確な切削が行えるのである。

4.3.3.2 次世代型のロボット切削機の開発

今回の加工に使用したロボット切削機は、筆者らが開発を手がけている次世代型のロボット切削機をベースに行った。全長 12m に及ぶ LVL の大断面の材を加工できるよう、240kg 可搬に対応した KUKA 社の 6 軸垂直多関節ロボットに外部 1 軸のリニアレール (8m) を加え、レール上を自在に稼働するロボットの特性を活かした仕様だ。マニピュレータの最大加工範囲は、3m (幅) ×12m (長) とした。

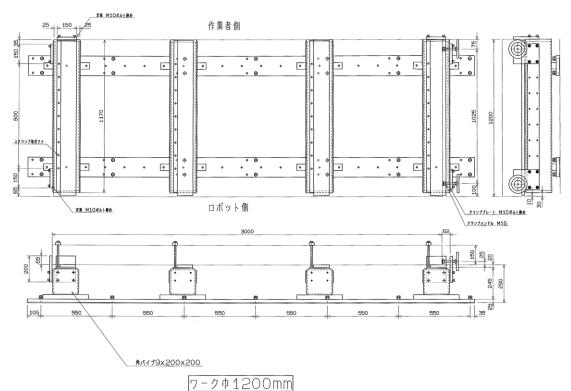
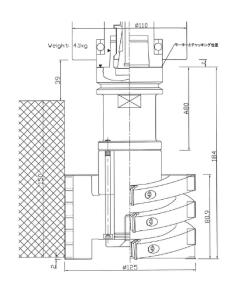


図 4.3.3.2-1 筆者らが開発を手がけている次世代型のロボット切削機

4.3.3.3 治具の開発

切削加工において、把持計画はもっとも重要な事項のひとつである。大型のLVL材料の搬入、ワーク固定、切削加工、搬出の一連の作業工程の計画を検討しながら、治具開発を行った。治具とは、材料を固定し、刃物の作業位置を誘導するために用いる器具の総称である。とりわけ 3m 以上の大判LVL パネルは、重量が増加するため、加工後の製品を破損しないよう、リフターとフォークリフトを活用した運搬計画を設計した。

7 7 FILOOMIN


図 4.3.3.3-2 治具設置の様子

4.3.3.4 エンドミルの開発

木切削工程では、刃物の適性が加工に大きな影響を与える。加工品質として良い結果を 導くためには、このエンドミルの開発が大きな鍵を握っている。LVL の素材特性や削りだ す形状に合わせ、切削精度、加工能力を加味しながら刃物を最適化することによって、正 確に、そして美しく切削できるようになる。しかしながら、先に述べたように、日本にお ける木加工用のエンドミルの開発はあまり進んでいない。木の文化が発達しているはずの 日本で、木加工の機械化が大きく遅れているのが実状だ。そのため、ドイツ製の木加工専 用エンドミルを使用することとした。

とりわけ本プロジェクトにおいては、最終的な木層パネルの厚みが 150mm であるため、 刃物の径は、全長の約 1/3 ほどの大きさを目標に選定を行った。最終的に刃長 160mm、刃 径は、40mm の耐久性の高いチッピング刃を採用した。刃長が非常に長く、切削時に不安定 であるため、スピンドル回転数 18000 (RPM) で刃物のバランス調整を行った。

また、側面形状の輪郭加工には、刃径 125 の大型カッターを採用し、同様にスピンドル 回転数 12000 (RPM) での最適化を行った。

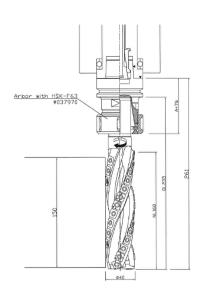


図 4.3.3.4-1 LVL に最適化された刃物(左:大型カッター、右:エンドミル)

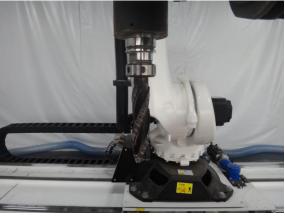


図 4.3.3.4-2 エンドミルをマニピュレータに装着した様子(左:大型カッター、右:エンドミル)

4.3.4 ロボット切削技術の開発

4.3.4.1 運動制御言語の必要性

従来の産業用ロボットの動作は、ロボットティーチング(教示)という作業によって行われてきた。教示とは、人間がロボットをリモコンで操り、動作をひとつひとつ記録していく手法である。これを行う者はティーチングマンと呼ばれ、現在の生産現場で用いられているロボット生産工程のほとんどが、彼らによって教え込まれた動作を繰り返し再生することで稼働している。その技術は、見た目の自動化とは正反対であり、職人技いっても過言でない人の手の仕事なのである。こうした手法は、同じものを大量生産するマスプロダクションの時代に適応してきた技術であるが、将来に求められる多品種少量生産の技術には、適応が難しいという点も今後の課題である。そのため本プロジェクトでは、コンピュータの計算力を活用したオフラインシュミレーションの技術を適応すると伴に、最新のロボット言語と従来型のGコードによるロボット運動制御技術を用いて、実践的にLVLの切削加工を行った。

4.3.4.2 加工ツールパスの考察

今回の切削作業では、様々な基本的な切削テストを行いロボット切削に最適なツールパスアルゴリズムを模索した。その結果、形状の特徴に合わせヘリカル曲線とおよびトロコイド曲線を基として組み合わせた切削パスを作成した。切削長は長くなるが、切削負荷を低減し、マニピュレータ側の負荷も低減すると伴に刃物の寿命を延ばすことができる点が、大きな特徴である。

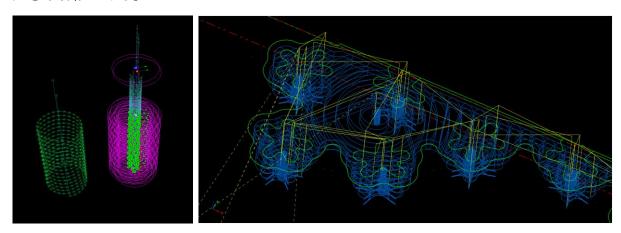


図 4.3.4.2-1 ロボット切削に最適なツールパス (左: ヘリカル曲線、右: トロコイド曲線)

4.3.5 切削加工

木層ウォールの試験体は、無加工1体、幾何学図形を基調とした4体、意匠表現に配慮した3体の合計7体の構成で設計された。2次元平面で作図された図面を、LVLパネルの厚みを加味して、3次元モデルに変換する、CAMデータの製作は、切削工程ごとにツールパスを分割して、最適な加工条件を設計する。切削パス経路の計画に加え、刃物の送り速度、回転数、進入位置、進入角度、退避経路などを考慮しながら、オフライン・シミュレーションを繰り返し確認し、最終的な切削パスを決定する。ロボット切削において最も重要な工程は、コンピュータ上の計算結果と実際の切削条件を配慮しながら

決定するロボット姿勢制御の最適化である。

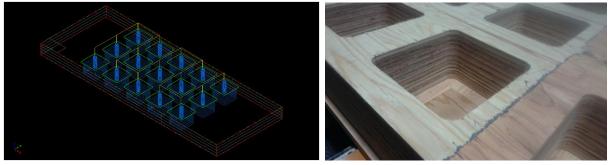


図 4.3.5-1 直交格子

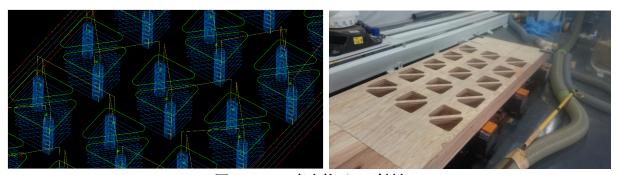


図 4.3.5-2 直交格子 + 斜材

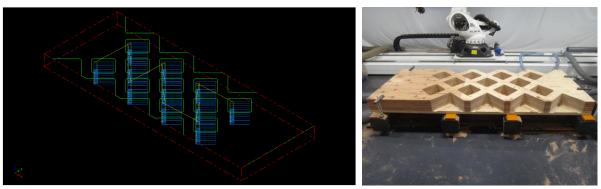


図 4.3.5-3 斜格子

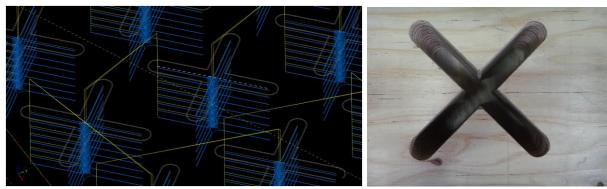


図 4.3.5-4 クロス字格子

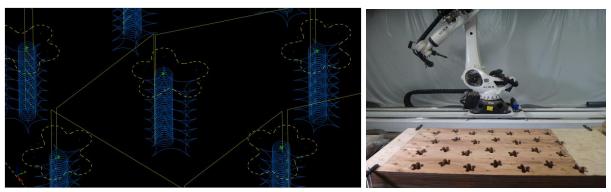


図 4.3.5-5 意匠模様 1 (枠加工無)

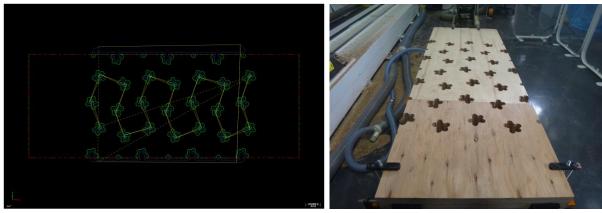


図 4.3.5-6 意匠模様 2 (枠加工有)

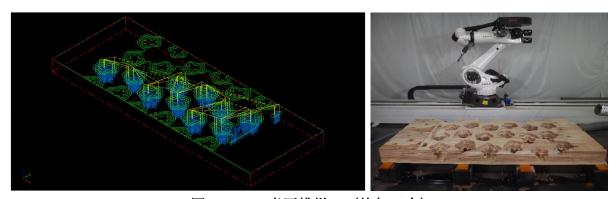


図 4.3.5-7 意匠模様 2 (枠加工有)

4.3.6 ロボット切削加工の将来

従来のロボット活用手法の枠を超えて、切削条件の厳しい LVL の加工においても良好な切削加工結果が得られた。CNC 工作機械の置き換え、更には、次世代加工機として LVL をはじめとする積層接着した厚型パネルの加工機械として、新しい可能性を示したと言える。また今後、ロボットアームの持つ特色を活かして、より高度な3次元切削加工にも大きな期待が高まる結果となった。

4.4 構造実験の結果

4.4.1 有開口版の構造性能の比較

前節の構造試験の結果を以下表 4.4.1-1 にまとめた。以下表 4.4.1-1 における保持率は、各試験体の E-1 に対する性能の比率である。

E-1E - 2E-3E - 4E-5 E-6 E - 7E-8 [kN] 90.5 53. 59 28.62 89.21 69.33 94.1 78.87 50.84 Pmax 2/3Pmax [kN] 60.3 35.7 19.1 59.5 46.2 62.7 52.6 33.9 保持率 [%] 100.00 59. 22 98.57 76.61 56. 18 103.98 87.15 [kN] 38.29 28. 12 15.94 45.02 37.25 44.45 36.50 27.17 Ру 保持率 100.00 97.28 70.96 [%] 73.44 117. 58 116.09 95.33 Pu/5Ds [kN] 19.49 13.23 7.01 21.15 16.09 21.13 22.32 11.95 保持率 67.87 [%] 100.00 108. 54 82.56 108.42 114. 55 61.32 1.25 1.40 1.33 1.29 1.69 1.28 1.36 1. 26 保持率 100.00 112 103 [%] 109 106 101 135 102 1/150rad. 時の P [kN] 85.83 72.5534. 13 16.26 51.84 42.41 70.25 34. 10 保持率 [%] 100.00 60.40 81.85 84.53 Min(2/3 Pmax, Py,[kN] 38.3 28. 1 15.9 45.0 37.3 36.5 27.2 44.5 1/150rad. 時の P) 保持率 [%] 100.00 73.44 41.63 117. 58 97.28 116.09 95.33 70.96 破壊モード 柱脚 壁版 壁版 壁版 壁版 柱脚 柱脚 壁版

表 4.4.1-1 試験結果一覧

表において、 無地 :無開口版と比較しても80%以上の性能を保っているもの

黄 :無開口版に比較して性能が 50-80%に低減されているもの赤 :無開口版に比較して性能が 50%以下に低減されているもの

薄緑 :無開口版に比較して性能が増加しているもの

残存部分が繊維方向に連続していない試験体 E-3 は、耐力・剛性ともに大きく性能が低下することがわかった。

試験体 E-2, E-8 のように、残存部分がラーメンフレームに近いような形状の場合には、耐力も 1/2~3/4 程度に低下するものの、それ以上に剛性の低下率が大きく半分以下となった。

E-8 にブレースを入れた形状の E-3 は、耐力は無開口版の E-1 同等程度の性能を発揮したが、剛性は 6 割程度に低下した。これは、ブレース部が柔らかい繊維直交方向成分を含んでおり、剛性成分には多大な寄与ができないためと考えられる。

E-6, E-7 は欠損面積が小さいことも手伝ってか概ね良好な構造性能を示したが、E-5 は欠損率が大きく、また偏芯していることもあり剛性が著しく低下した。

4.4.2 有限要素解析モデルによる検証

入力条件

- 厚みが均一な二次元平面応力要素モデルを設定した。 試験体 E-5 の解析は三次元解析となるため本報では取り扱わない。
- ・ 材料定数を表 4.4.2-1 に、接合条件を表 4.4.2-2 に、分割条件を表 4.4.2-3 に示す。
- ・ 表 4.4.2-1 の直交方向ヤング係数は、直交層と平行層の比率が概ね 1:3 であることから平行層の 1/3 と設定し、せん断弾性係数は繊維方向のヤング係数の 1/15 とした。
- ・ 表 4.4.2-2 の接合具部分のばね定数は3章2節の試験体D-2の値の1/2とした。
- ・ 入力せん断力は各試験体の最大荷重とした。

表 4.4.2-1 解析で使用した木材の材料定数

使用材料	繊維方向ヤング係数	直交方向ヤング係数	せん断弾性係数
	E_L [N/mm 2]	E_R [N/mm ²] (= $E_L/3$)	$G [N/mm^2] (=E_L/15)$
スギ 50E-F130**	5000	1667	333

※規格相当品

表 4.4.2-2 支持条件

部位	支持条件	備考
壁脚部全長	圧縮方向にばね剛性	10 ⁹ [N/mm] (十分大)
壁脚部全長	せん断方向にピン支持	
全節点	面外方向にピン支持	
接合具部分	引張方向にばね剛性	110 [kN/mm・本]相当

表 4.4.2-3 分割条件

試験体	開口部周辺 [mm]	その他 [mm]	分割形状
E-1	縦横@10	縦横@10	四角形
E-2, E-3, E-4, E-8	縦横@10	縦横@10	三角・四角形組合せ
E-6, E-7	縦横@12.5	縦横@25	三角・四角形組合せ

4.4.3 解析結果一覧表

以上の入力条件・開口形状による最大応力と破壊モードの関係を表 4.4.3-1 に、壁版の初期せん断剛性の解析値と試験値の対応を表 4.4.3-2 に示す。解析の詳細は次項にまとめた。

項目	単位	E-1	E-2	E-3	E-4	E-5	E-6	E-7	E-8
入力せん断力 P	[kN]	90. 5	53. 59	28. 62	89. 21	69. 33	94. 1	78.87	50.84
変形 δ	[mm]	14. 2	29. 5	40. 4	28. 7		22.7	17. 4	21.8
最大せん断応力	$[N/mm^2]$	1. 01	4. 01	5. 79	4. 28		4. 12	2. 58	3. 20
最大圧縮応力	$[N/mm^2]$	16. 90	38. 94	61. 65	30. 04		51.99	27. 37	21.73
最大引張応力	$[N/mm^2]$	8. 79	39. 42	61. 69	26. 87		50.91	40.80	22.02
最大横引張応力	$[N/mm^2]$	0. 07	12. 88	10. 94	10. 16		4. 36	5. 07	8. 12
破壊モード		柱脚	壁版	壁版	壁版	壁版	柱脚	柱脚	壁版

表 4.4.3-1 最大応力と破壊モード

表 4.4.3-2 せん断剛性の解析値と試験値の比較

		E-1	E-2	E-3	E-4	E-5	E-6	E-7	E-8
解析值	kN/rad	17159	4908	1912	8404		11197	12217	6291
試験値	kN/rad	13539	5156	2473	7914	6508	10913	12064	5164
解析/試験	kN/rad	1. 27	0. 95	0.77	1.06		1.03	1.01	1. 22

せん断剛性については、試験結果と解析結果との対応は、概ね良好な結果が観測された。一方で、有限要素解析による応力分布と破壊形状を観察すると、局部的に大きな横引張応力が生じると想定される壁版に脆性破壊が生じていることがわかった。局部的な脆性破壊から始まる応力再分配が次々と脆性破壊を引き起こし、壁版全体の崩壊に至ると考えられる。

解析においては直交異方性を考慮し、かつ複雑な形状を可能な限り再現しようと努めた。その結果三角形要素や鋭利な四角形要素が部分部分に現れてしまい、計算上応力が集中してしまい、表 4.4.3-1 の最大応力は必ずしも適切とは考えられない数値も登場している。複雑でかつ異方性を持つ材料の精密な解析手法の研究も引き続き行っていく必要がある。

4.4.4 まとめ

本節では様々な開口を持ち、かつ統一された外法寸法、及び接合部の試験体に対して 水平せん断試験を行い、その曲げ・せん断応力の複合応力に対する水平剛性と破壊モー ドを調査した。有限要素法による解析結果との整合性を調査しても、定性的な傾向とし ては概ね正しいと言える。より精密な解析手法の開発と横引張等の応力に対する挙動の 定量的な評価方法については、今後の調査研究に期待したいところである。

4.5 まとめ:有孔木層ウォールの展開

これまでの検討の中で「有孔木層ウォール」には一定の構造性能が期待でき、ロボット アームなどによる切削加工により、多様な切削が実現可能であり、厚さを活かした三次元 的な切削の実施可能性も明らかとなった。

図 4.5-1 ロボットアームなどによる切削加工と 構造実験の様子

その上で、将来的な「有孔木層ウォール」の展開可能性を考えた「桜型開口」をもつ「有 孔木層ウォール」について説明したい。

4.5.1 桜型有孔木層ウォール

このパネルデザインは、正方形と正三角形で充填されたグリッド(ここではこのグリッドを用いた作品を作っているアーティスト野老朝雄氏にちなんでトコログリッドと呼ぶ)を基準幾何学として採用している。このトコログリッドは、厳格な幾何学性をもちながらも、一般的な直行グリッドに比べると有機的な揺らぎを見るものに印象付ける。

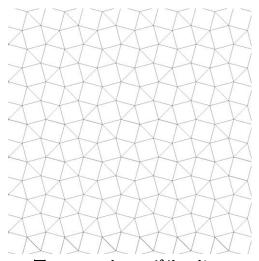


図 4.5.1-1 トコログリッド

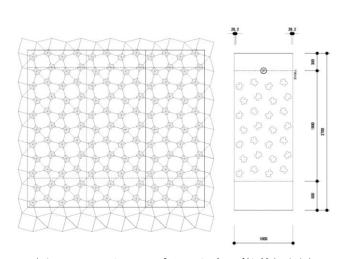


図 4.5.1-2 トコログリッド上に桜型を配置

このグリッドの交点から、他の交点に向かって、それぞれ腕を伸ばすような5つの腕を 持つ孔をデザインした。様々なイメージを想起する形状であるがここでは「桜型」と名付 けた。この桜型の孔は一見多様な形状があるようにも見えるが、実際には同じ形状が回転 しているだけである。そのため、この孔を利用する金物、ガラスなどの取り付けを考える 際にも、少ない種類の部品で対応することが考えられる。



図 4.5.1-3 桜型の配置をずらした2つの案(左、中央)と、厚み方向に孔を拡張させた1案(右)

この基本グリッドをもとに「各孔をつないで正方形、正三角形の開口」や「有機的な輪郭をもったより大きな切り欠き」などの展開も可能である。これらの開口は、眺望や通風を取り込む窓となったり、設備などの貫通などにも利用されることが考えられる。

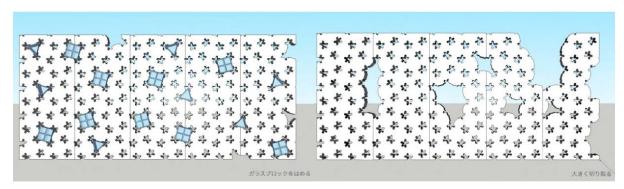


図 4.5.1-4 有機的な輪郭をもつ開口のイメージ

また、木層ウォールは厚みのある壁であることを活かし、厚み方向にも多様な加工を施すことが考えられる。今回は桜型の有孔を起点とし、厚み方向に滑らかに広がっていく、一種の地形のような形状を考えた。デザイン、加工等の時間的な制約もあり、実際の加工実験では三段階の荒い加工であったが、大きな可能性を感じさせるものであった。

図 4.5.1-5 今回の実験で制作した試験体

図 4.5.1-6 滑らかに広がる孔のイメージ

図 4.5.1-7 3D プリンターモデル

4.5.2 有孔木層ウォールの将来展開イメージ

前述の「有孔木層ウォール」を用いた将来の応用事例の試設計を行った。

想定条件

構造: 木造三階建、準耐火構造 用途: オフィスや高齢者施設など

パースは木造の構造建て方の状況を想定したものである。今回は検証を行っていないが、水平力だけではなく鉛直力も負担する「有孔 LVL 壁構造」が可能になると想定して設計を行っている。

また、桜型の開口をはじめとする開口部に桜型の特注ガラスブロックを組み合わせたり、 板の厚みを利用した板ガラスの取り付け方などを工夫すれば、将来的にはこの「有孔木層 ウォール」が準耐火性能を持った外壁となることも考えられるだろう。

これまでの柱梁といった線材を中心とした木造ではなく、木をたっぷりと用いる LVL などの厚板材料を用いた建築が創り出すことのできる新しい建築表現の可能性の一つを示すことができたと考えている。

図 4.5.2-1 有孔木層ウォールを外壁にもつ建築のイメージ

5. 厚板 LVL の鉄骨造への適用

5.1 はじめに

本章では当委員会で研究・実験された材料(厚板 LVL)とそれを接合する技術(ラグスクリューボルトおよびグルードインロッド)を使用した鉄骨構造物の可能性を検証する。

厚板 LVL は 50mm~150mm という厚さからも自明のこと、材料そのものの強度的ポテンシャルは極めて高い。それゆえ在来軸組工法のように 5 倍程度の壁倍率ではなく、20 倍 (40kN/m) 程度の剪断耐力を設定することで、より高層の構造物への適用が考えられ、鉄骨造への適用は高層木造建築への足がかりともなるだろう。

5.2 に、適用例として 8 m グリッドの平面形で 2 階建て~ 5 階建てを想定したケーススタディを行い、各々のケースでの壁倍率と必要壁長の関係をまとめた。

5.3 は、5 階建ての商業施設を想定した構造体の提案である。鉄骨フレームは柱・梁を ピン接合とし、水平力を厚板 LVL が負担するという前提を採った。立体モデルによる表現 で「木層ウォールを適用した建物」の空間イメージが把握できる。

5.4 として、既存の鉄骨造 2 階建てオフィスビル (2007 年竣工) に厚板 LVL の適用したケースを挙げた。本委員会の研究成果の一つである「有孔厚板 LVL」を実際の建物に適用した場合の空間イメージの一例である。

5.2 必要壁長のケーススタディ

建物概要 : 2階建て~5階建てのオフィスビルを想定

8m x 2 スパン x 8m x 4 スパン (各階面積 512m2)

床仕様 : デッキプレート+コンクリート 125mm

壁仕様 : LVL 壁の外側にカーテンウォール

積載荷重 : 800N/m2 (地震用)

5-2 頁に、2 階建てから5 階建て各ケースの地震力と壁倍率・壁量の関係をまとめた。

■2階建て~5階建て鉄骨造の必要壁量

各階の重量(地震用)

	床面積	固定荷重	積載荷重	外壁重量	床	(梁含む)		壁·柱	合計
	床面積	回走何里	有貝里以19 里	77至里里	DL	LL	TL	五.任	
	m2	kN/m2	kN/m2	kN/m2	kN	kN	kN	kN	kN
屋根	512	0.80	0.00		410	0	410		626
				1.50				432	
5F	512	4.00	0.80		2048	410	2458		2890
				1.50				432	
4F	512	4.00	0.80		2048	410	2458		2890
				1.50				432	
3F	512	4.00	0.80		2048	410	2458		2890
				1.50				432	
2F	512	4.00	0.80		2048	410	2458		2890
				1.50				432	
1F	512	6.00	0.80		3072	410	3482		3698

地震地域係数 Z= 1.00 1.00 用途係数 I= 地盤種別(第2種) 0.6 Tc= 振動特性係数 1.00 Rt= 標準せん断力係数 Co= 0.20 1.00 α=

	5階建て	4階建て	3階建て	2階建て
建物高さ: h=	15	12	9	6
一次固有周期: T=	0.450	0.360	0.270	0.180

必要壁長表

		A NK 手目	建物重量				層せん断			必要壁長		
建物規模	階	各階重量	Wi	αi	Ai	Ci	カ Qi	10倍	15倍	20倍	25倍	30倍
		kN	kN				kN	m	m	m	m 7 23 35 43 50 6 21 31 38 5 18	m
	5F	626	626	0.051	2.670	0.534	334	17	11	9	7	6
5階建て	4F	2890	3515	0.289	1.603	0.321	1,127	57	38	29	23	19
	3F	2890	6405	0.526	1.327	0.265	1,700	87	58	43	35	29
	2F	2890	9294	0.763	1.146	0.229	2,131	109	72	54	43	36
	1F	2890	12184	1.000	1.000	0.200	2,437	124	83	62	50	41
4階建て	4F	626	626	0.067	2.311	0.462	289	15	10	7	6	5
	3F	2890	3515	0.378	1.432	0.286	1,007	51	34	26	21	17
	2F	2890	6405	0.689	1.178	0.236	1,510	77	51	39	31	26
	1F	2890	9294	1.000	1.000	0.200	1,859	95	63	47	38	32
	3F	626	626	0.087	1.987	0.397	249	13	8	6	5	4
3階建て	2F	2890	3515	0.487	1.282	0.256	901	46	31	23	18	15
	1F	3698	7213	1.000	1.000	0.200	1,443	74	49	37	29	25
2階建て	2F	626	626	0.178	1.513	0.303	189	10	6	5	4	3
5階建て - 4階建て -	1F	2890	3515	1.000	1.000	0.200	703	36	24	18	14	12

*壁倍率 1.0 = 1.96kN/m

5.3 5 階建て商業ビルのモデル構造設計

建物概要: 5階建ての商業ビルを想定。

8m グリッドによる平面計画(延床面積 2300m2)

床仕様 : デッキプレート+コンクリート 125mm

壁仕様: LVL 壁の外側にカーテンウォール

積載荷重 : 1300N/m2 (地震用)

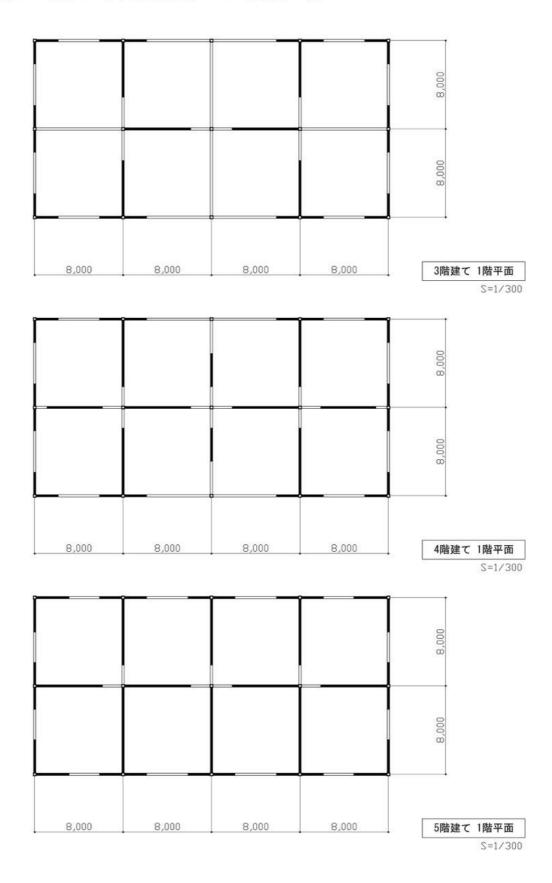
鉄骨フレーム : □-250x250 (柱) H-450x200x9x14 (大梁)

鉄骨接合部 : ウェブだけを高力ボルトにて接合(水平力を負担しない)

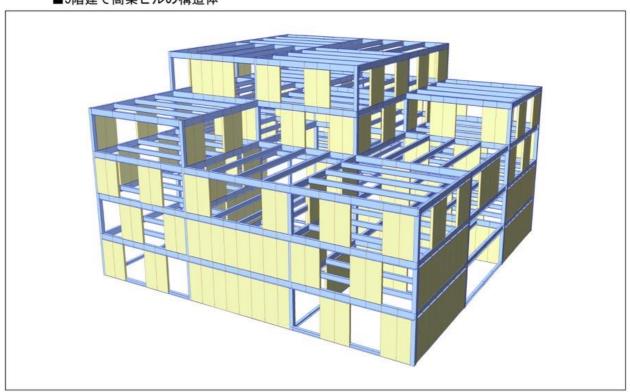
LVL 壁脚部 : H型金物を介して LSB (ラグスクリューボルト) または GIR (グルードイ

ンロッド) で定着

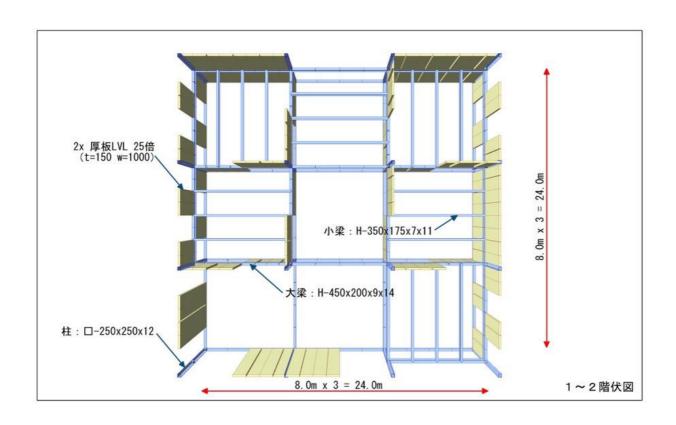
LVL 壁頭部 : ガセットプレートを介してドリフトピンで定着(主に剪断力を伝達)

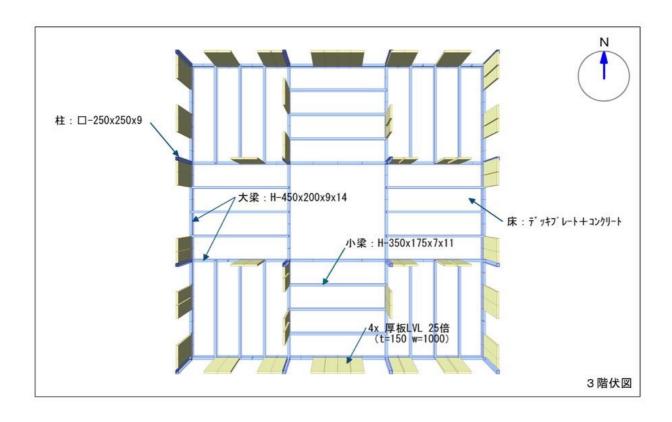

5-4 頁に、5 階建て商業ビルの地震力と壁倍率・壁量の関係をまとめた。

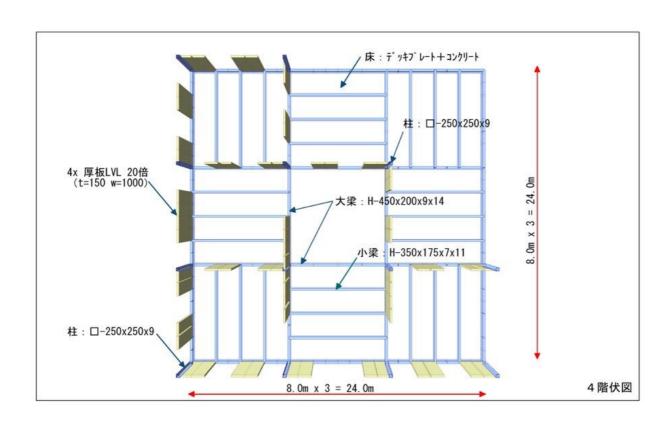
5-5頁~5-8頁に、5階建て商業ビルの構造立体図を添付。

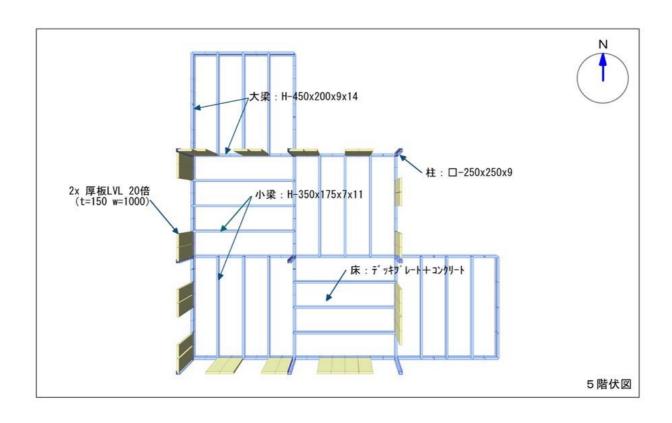

5-9 頁に、地震時の梁応力図を添付。

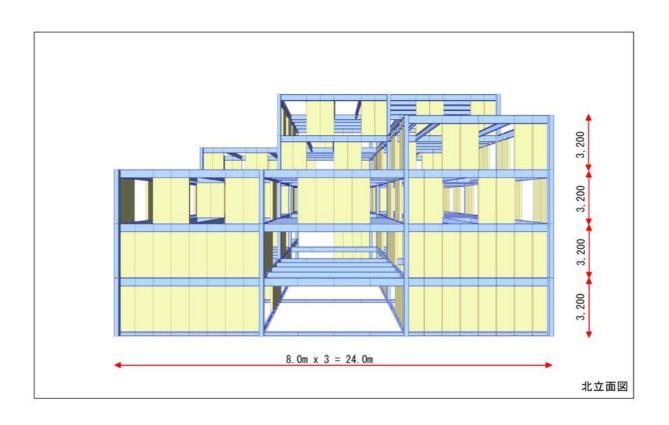
5-10 頁に、接合部詳細図を添付。

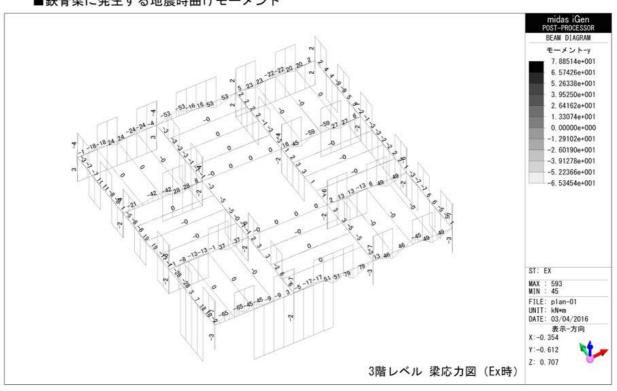

■3階建て~5階建てにおける壁配置イメージ(壁倍率20倍)

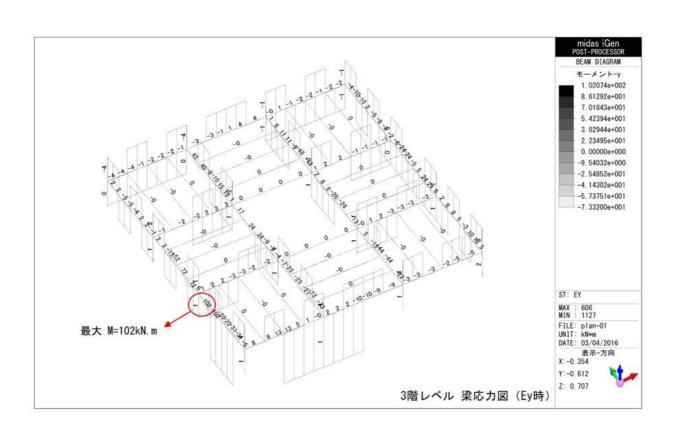


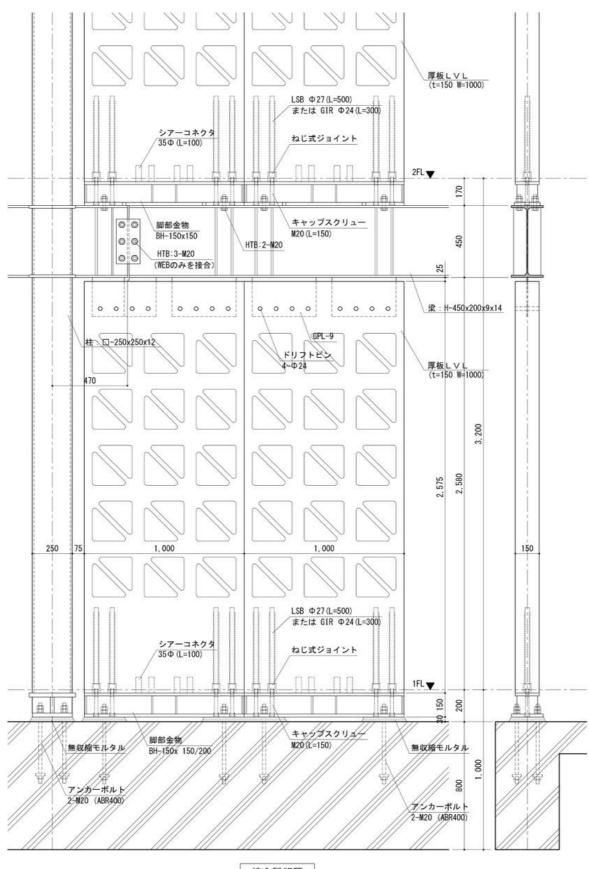

■5階建て商業ビルの構造体











■鉄骨梁に発生する地震時曲げモーメント

接合詳細図 S=1/20

5.4 既存2階建て鉄骨造オフィスビルへの適用

【原設計データ】

建物名称 : リサイクル産業事務所棟

所在地 : 愛知県豊橋市

竣工年 : 2007年2月

構造・規模:軸組鉄骨造地上2階建(延床面積約130m2)

建築設計 : 彦坂昌宏建築設計事務所

耐震設計 : ルート 1-1 (ベースシアー係数 CO=0.3 として弾性設計)

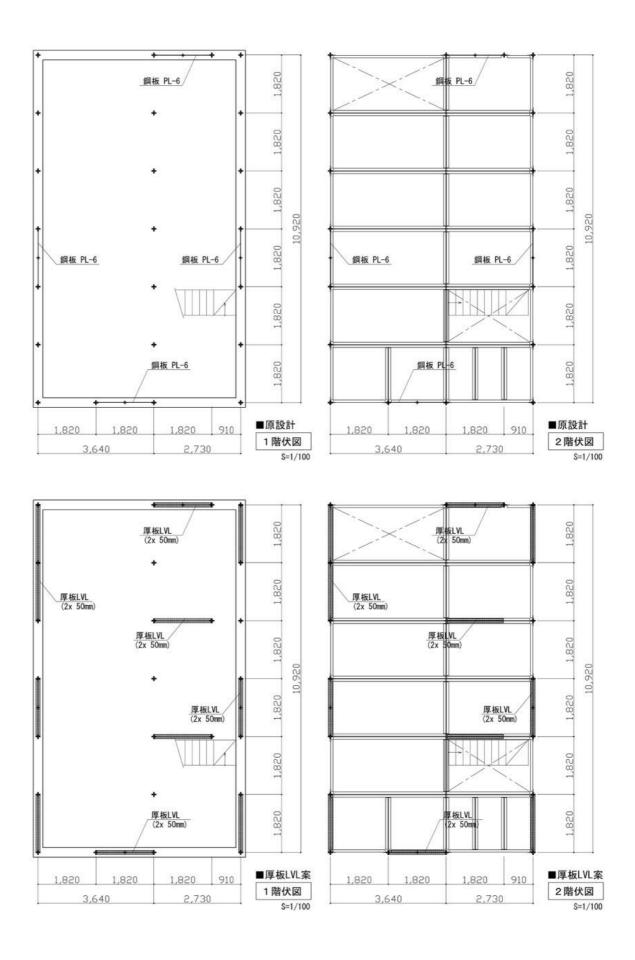
耐震要素 : 鋼板 (t=6mm)

鉄骨フレーム : 4x L-65x65x6 (柱) 2x [-150x75x6 (梁)

基礎形式 : ベタ基礎 (t=250mm)

【厚板 LVL 案の方針】

耐震要素 : LVL 壁 (t=50mm) を 2 枚合わせで使用


LVL 壁接合 : ドリフトピン接合で剪断力のみを負担する (剪断パネル)

軸力は鉄骨フレームが負担

5-12 頁に、既存平面図および LVL 壁案の平面図 (伏図) を添付。

5-13 頁に、既存建物の竣工写真を添付。

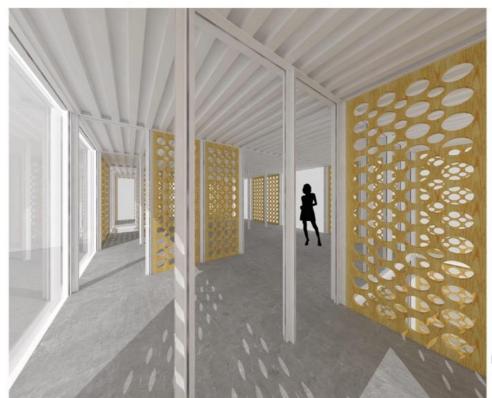
5-14頁~5-16頁に、イメージパースを添付。

■鉄骨造 竣工写真

外観写真

内観写真

■厚板LVL案イメージパース


内観①

内観②

内観③

内観④

5.5 まとめ

本委員会で行った8種の壁体加力試験では、最強のものでも壁倍率20倍程度の適用が上限となる結果が確認されている。5.2において2階建て~5階建てを想定したケースでの壁倍率と必要壁量の関係を表したが、より高層の場合、例えば7階建てでは1階での必要壁量が5階建ての場合の約1.5倍程度となる。これを5-4頁の壁配置イメージに照らして考えると壁が多すぎて平面計画が成立しないことが想像できる。従って5階建て以上の中高層鉄骨造に厚板LVLを適用する場合は、壁倍率30倍以上のスペックが求められ今後、開口の開け方、定着部の設計等のさらなる工夫、進化に期待するものである。

厚板 LVL を使用した鉄骨造の利点として、高耐力の壁をランダムに配置した計画でもその反力をフレームが無理なく処理できる点が挙げられる。5-9 頁は、5 階建てモデルに地震力が作用した際、梁に発生する曲げモーメントを示しており、最大値が 102kN.m となっている。梁材:H-450x200では、この曲げ応力度は 70N/mm2 程度でクリティカルな値とはならないが、木梁では剪断力が卓越することも多く注意を要する。鉄骨梁の場合は上下階の壁配置の自由度が容易に得られるのである。

厚板 LVL が市場の一般建築物にとって如何なる意味を持つかという点で、鉄骨造への適用には良い展望がある。このハイブリッド構造を考える時、「鉄骨造への木の活用」という視点ではなく「木構造への鉄の活用」と考えるべきである。前者の場合は「機能・コスト追求型」となり、鉄骨ブレースとコスト競争をしても勝ち目がない。そうではなく、まず「高層の木の空間」という発想から始め、柱と梁については鉄骨造とすることで断面を抑え、機能性を高めた計画とすることができるという帰結である。

純木造の場合でも鉛直荷重を受ける柱・梁は耐火処理が必要になるから、その部分を鉄 骨造でつくって仕上げを施すという考え方は合理的である。一方で地震力のみを負担する 壁体は耐火被覆が不要となり、空間の多くの部分に木があらわしとなって建築の個性を決 める力となるだろう。

今回、「木層ウォール委員会」では、厚板 LVL にロボット加工を導入することで、構造 耐力に止まらない多様な機能性・意匠性を合理的に獲得できることを証明している。この 技術を使った空間の実例が早期に達成されることを期待したい。

6. まとめと今後の課題

LVL厚板壁の接合部性能を検証し、GIR、LSB接合部について、厚板壁を実現する接合部の性能を得て、構造設計に使えるデータを習得し、構造設計を可能にした。

昨年行ったカラマツLVLの接合部性能に加え、スギLVLを用いた際の接合部について性能を得たことで、樹種についての提案も可能になった。

意匠性を持たせたLVL厚板壁の試作を行い、意匠設計に基づく最適な加工プログラムを設計し、加工を行った。ロボットによる高度な3次元切削加工について、良好な切削加工が可能であることが、確認された。また、意匠性を持たせた厚板壁の耐震壁性能を検証し、設計データを得た。これにより、設計者に対して、仕様の提案が可能となった。

S造との複合構造についての検証を行い、鉄骨造にLVL厚板壁を適用した建築の試設計と検証を行った。S造との混合における利用方法について、メリットとデメリットの検証を行えた。

今後の展開としては、意匠・構造設計者に対して、スギ厚板LVLの設計情報をまとめて公開し、性能、用途について理解が得られるように周知を行う。厚板壁LVLの生産性を検証し、設計者が採用しやすいコストを提案していくことが考えられる。

試験報告書

スギ LVL B種 木質ウォール 面内せん断試験

<試験実施者> 株式会社ストローグ

<試験実施場所> 株式会社ストローグ

<試験実施期間> 平成 27 年 2 月 20 日~24 日

<試験報告書> 株式会社ストローグ

1-1. 一般事項

1) 目的

ラグスクリューボルトを用いたスギ LVL 木質ウォールの材料自身の強度特性を確認することを目的に、材料面内せん断試験を実施する。

なお、「木造軸組工法住宅の許容応力度設計(2008年度版)」(※)に準拠し、試験を行った。

(※): (財) 日本住宅・木材技術センター発行(平成20年12月)

2) 試験実施期間

平成 27 年 2 月 20 日~24 日

3) 試験実施者

株式会社ストローグ

4) 試験場所

株式会社ストローグ

1-2. 試験体

1) 試験体構成材料の仕様

柱材 : スギ LVL B 種 (150×1000)

2) 試験体数

試験体数は各1体とする。

3) 試験体詳細

試験体の詳細について、図 1-2.1~図 1-2.8 に示す。

4) 接合コネクタ詳細図

接合コネクタの詳細について、図 1-2.9 に示す。

- 4) 試験体の締め付けトルク
 - ・キャップスクリューとラグスクリューボルト:100N·m
 - ・キャップスクリューと柱脚コネクタ:100N·m

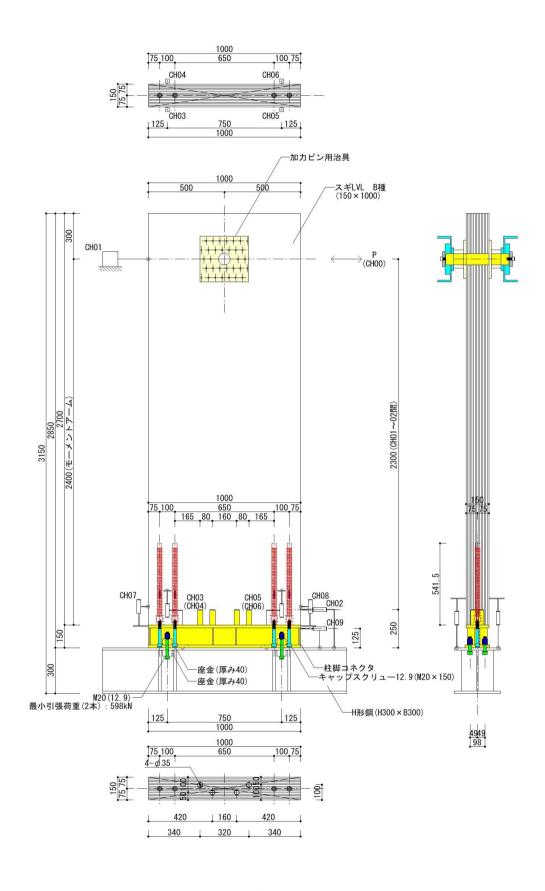


図 1-2.1 試験体構成材料、全体図および載荷・測定箇所図(E-1)(寸法単位:mm)

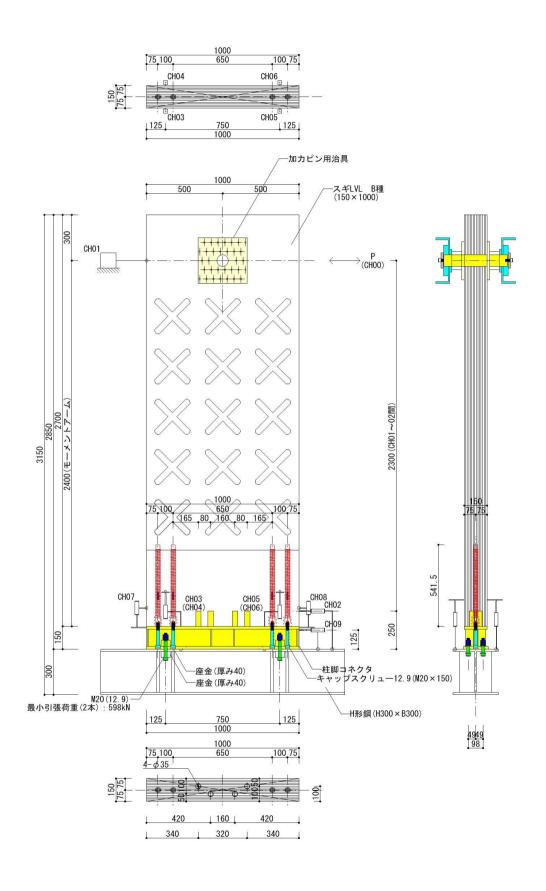


図 1-2.2 試験体構成材料、全体図および載荷・測定箇所図(E-2) (寸法単位:mm)

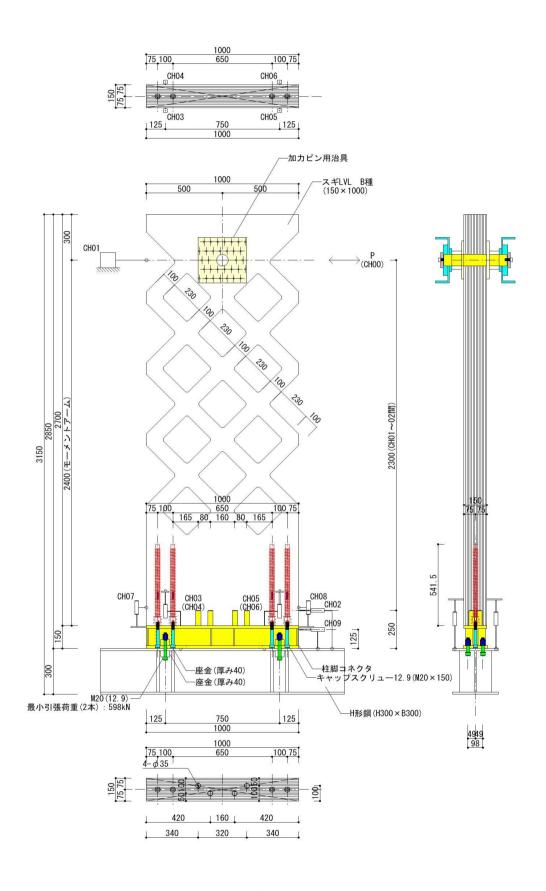


図 1-2.3 試験体構成材料、全体図および載荷・測定箇所図(E-3)(寸法単位:mm)

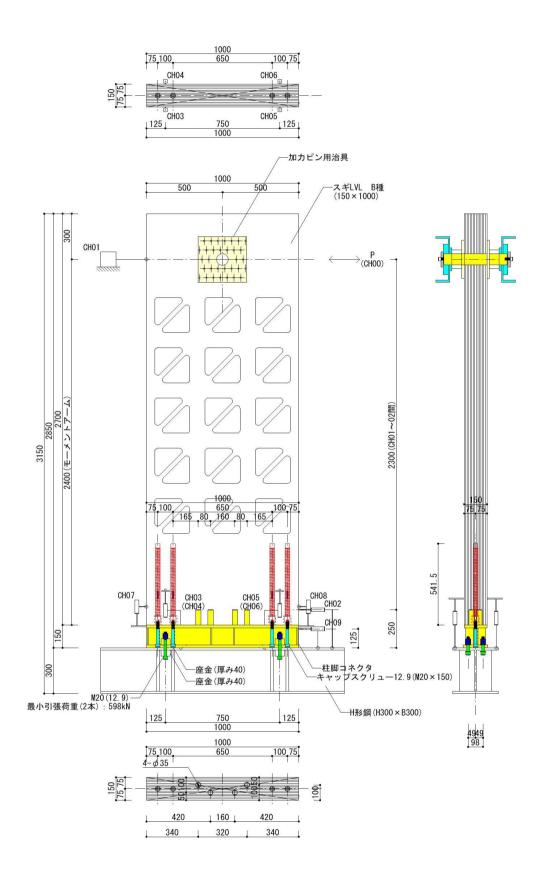


図 1-2.4 試験体構成材料、全体図および載荷・測定箇所図(E-4)(寸法単位:mm)

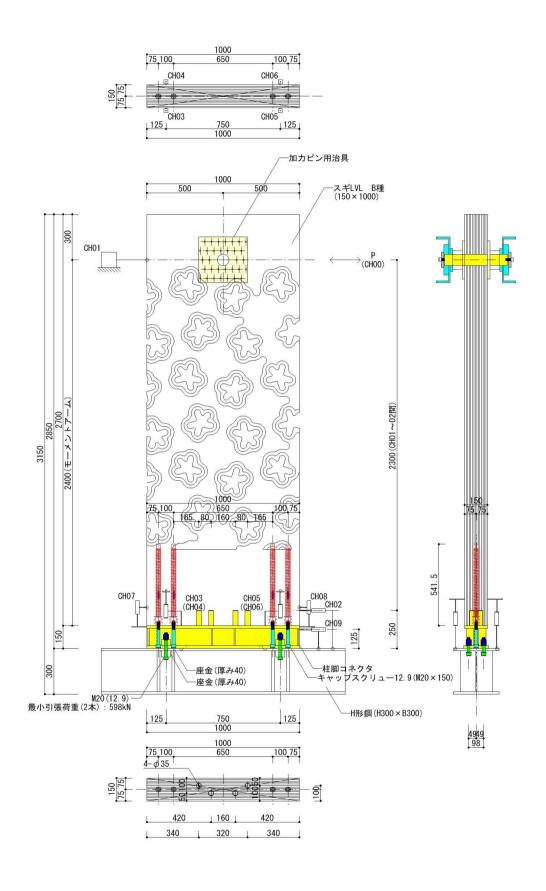


図 1-2.5 試験体構成材料、全体図および載荷・測定箇所図(E-5)(寸法単位:mm)

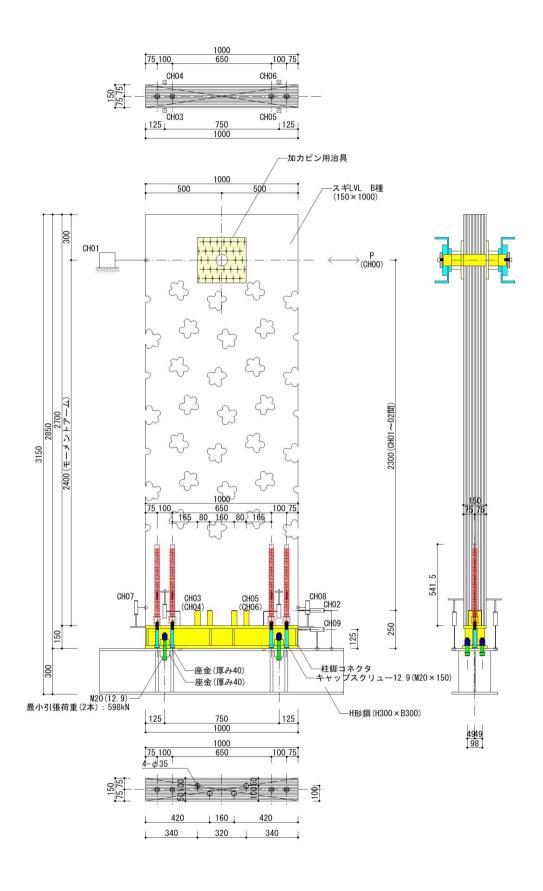


図 1-2.6 試験体構成材料、全体図および載荷・測定箇所図(E-6)(寸法単位:mm)

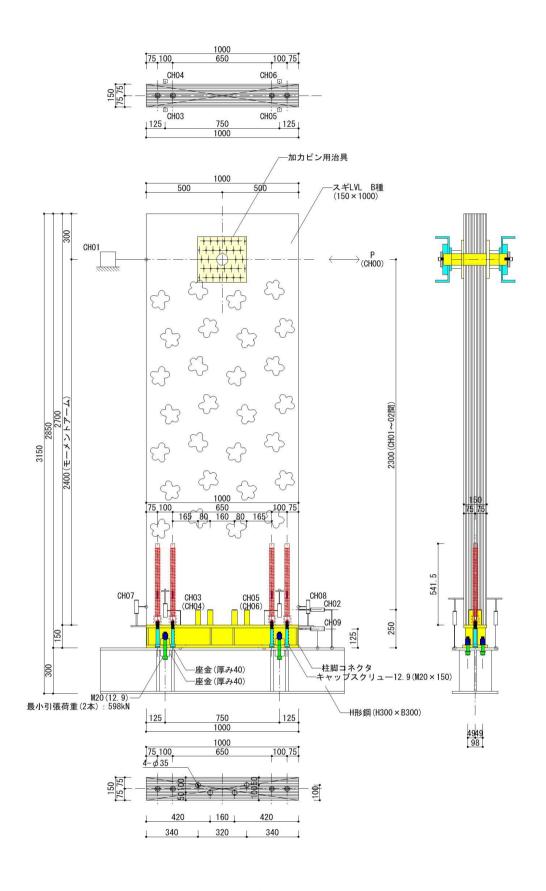


図 1-2.7 試験体構成材料、全体図および載荷・測定箇所図(E-7)(寸法単位:mm)

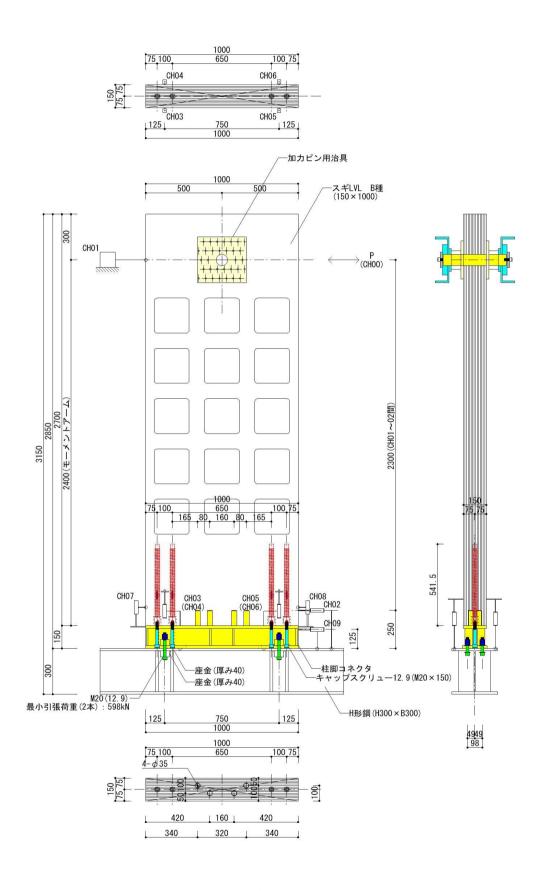
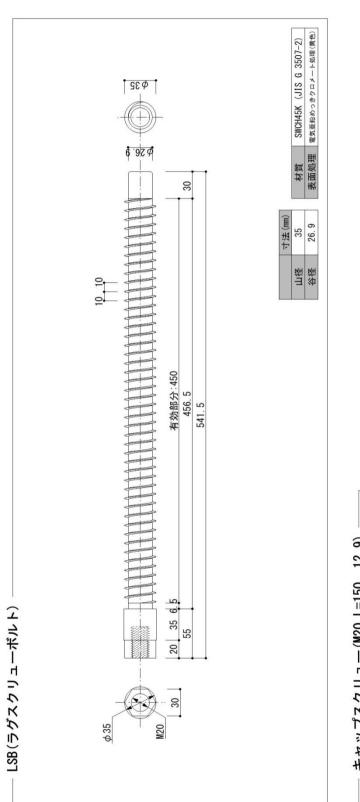



図 1-2.8 試験体構成材料、全体図および載荷・測定箇所図(E-8)(寸法単位:mm)

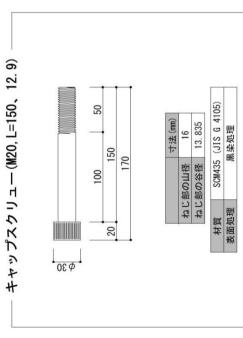


図 1-2.9 接合コネクタ詳細図 (寸法単位:mm)

1-3. 試験方法

1) 試験方法

試験体の概要及び試験方法を前項の図 1-2.1~図 1-2.8 に示す。

2) 変位の測定

変位測定は、図 1-2.1~図 1-2.8 のとおりの位置に変位計を設置する。

2) 加力方法

加力は試験体の中心を加力点として、アクチュエータにより行う。

①加力方法は正負交番繰り返し加力とし、繰り返し履歴は見かけのせん断変形角 y が 1/450、

1/300、1/200、1/150、1/100、1/75、1/50rad の正負変形時とする。

- ②繰り返しは、履歴の同一変形段階で3回の繰り返し加力を行う。
- ③加力が最大荷重に達した後、最大荷重の80%の荷重に低下するまで加力するか、試験体の見かけの変形角が1/15rad以上に達するまで加力する。

1-4. 評価方法

1) 変位、荷重の定義

符号に関して、全変位計とも軸が押し出される方向を正とする。 荷重 P は、ロードセルにより計測される値とする。

2) せん断変形角の算定

見かけのせん断変形角 γ (rad) は下式により算出する。

見かけのせん断変形角: $\gamma = \frac{CH1 - CH2}{h}$

ここで、h : CH1~CH2変位計との水平距離 (=2300mm)

3) 初期剛性の算定

初期剛性の算定は、荷重-変位曲線から 0.1Pmax-0.4Pmax の範囲において弾性域を判断し、剛性直線を設定した。

4) 完全弾塑性モデルによる耐力等の算定

完全弾塑性モデルによる耐力等の算定は、「木造軸組工法住宅の許容応力設計 (2008 年版)」 (**) の「6.3.5 評価方法」による。

(※): (財) 日本住宅・木材技術センター発行(平成20年12月)

1-5. 試験結果

1) 試験結果

各試験結果を表 1-5.1 に示す。

表 1-5.1 試験結果

			試験体名							
			E-1	E-2	E-3	E-4	E-5	E-6	E-7	E-8
最大荷重	Pmax	(kN)	90.50	53.59	28.62	89.21	69.33	94.10	78.87	50.84
最大荷重の2/3	2/3·Pmax	(kN)	60.33	35.73	19.08	59.47	46.22	62.73	38.38	20.75
最大荷重時のγ	γ max	(rad)	0.0071	0.0131	0.0149	0.0137	0.0122	0.0097	0.0082	0.0109
降伏耐力	Py	(kN)	38.29	28.12	15.94	45.02	37.25	44.45	36.50	27.17
降伏変形角	γу	(rad)	0.0027	0.0053	0.0065	0.0056	0.0058	0.0040	0.0030	0.0052
終局耐力	Pu	(kN)	79.55	50.42	26.11	82.02	63.99	85.68	72.34	47.83
終局変形角	γu	(rad)	0.0071	0.0131	0.0149	0.0137	0.0128	0.0097	0.0101	0.0118
初期剛性	K	(kN/rad)	13538.98	5156.05	2472.76	7913.88	6507.71	10912.85	12063.95	5164.67
降伏点変形角	γν	(rad)	0.0058	0.0097	0.0107	0.0104	0.0099	0.0077	0.0060	0.0092
塑性率	μ		1.25	1.36	1.40	1.33	1.29	1.26	1.69	1.28
構造特性係数	Ds		0.818	0.762	0.746	0.777	0.794	0.811	0.649	0.800
0.1 · Pmax		(kN)	9.05	5.36	2.86	8.92	6.93	9.41	7.89	3.11
0.1・Pmax時の γ		(rad)	0.0006	0.0009	0.0011	0.0010	0.0010	0.0008	0.0006	0.0009
0.4 · Pmax		(kN)	36.20	21.44	11.45	35.68	27.73	37.64	23.03	12.45
0.4・Pmax時の γ		(rad)	0.0026	0.0041	0.0045	0.0044	0.0041	0.0034	0.0025	0.0038
0.9 · Pmax		(kN)	81.45	48.23	25.76	80.29	62.40	84.69	51.81	28.02
0.9·Pmax時の γ		(rad)	0.0063	0.0099	0.0120	0.0111	0.0107	0.0082	0.0065	0.0093
特定変形角時の荷重P	1/450rad時のP	(kN)	30.88	12.24	5.72	18.57	15.40	25.76	27.99	12.00
	1/300rad時のP	(kN)	45.12	17.88	8.51	27.45	22.58	37.41	39.91	17.71
	1/200rad時のP	(kN)	65.51	26.04	12.58	39.94	32.73	54.15	56.84	26.11
	1/150rad時のP	(kN)	85.83	34.13	16.26	51.84	42.41	70.25	72.55	34.10
	1/120rad時のP	(kN)	_	41.80	19.70	63.23	51.61	85.85	78.52	41.44
	1/100rad時のP	(kN)	_	48.51	22.94	74.28	60.19	_	67.53	48.15
	1/75rad時のP	(kN)	_	50.05	27.88	88.08	1	_	_	-
	1/50rad時のP	(kN)	_	_	_			_	_	_

1-6. 荷重一変形角曲線グラフ

荷重-変形角曲線グラフを以下に示す。

図 1-6.1~図 1-6.8 : 曲げモーメントー回転角曲線(正負履歴線)

図 1-6.9~図 1-6.16 : 曲げモーメントー回転角曲線(包絡線)及び完全弾塑性モデル

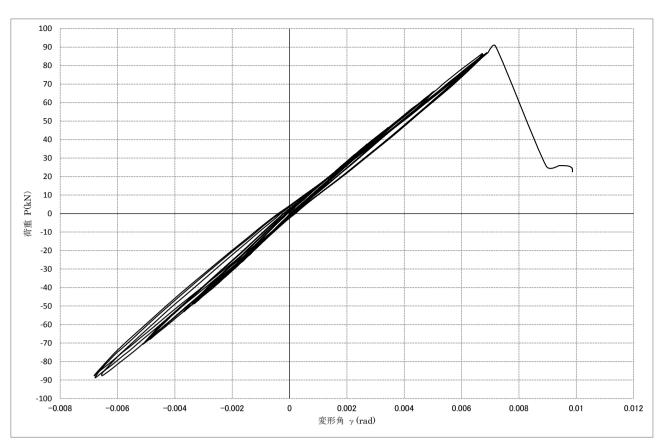


図 1-6.1 試験体(E-1) 荷重-変形角曲線(正負履歴線)

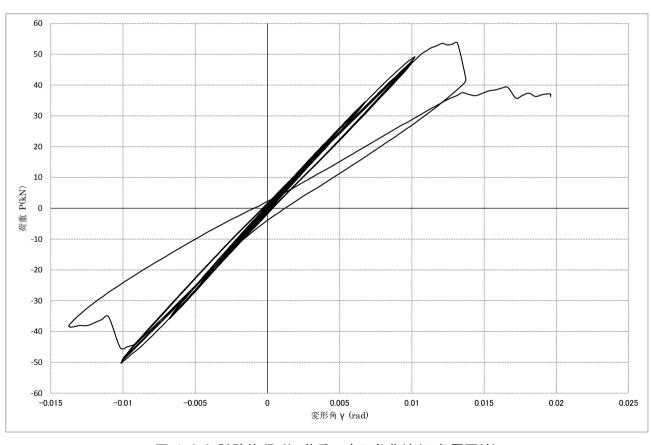


図 1-6.2 試験体(E-2) 荷重-変形角曲線(正負履歴線)

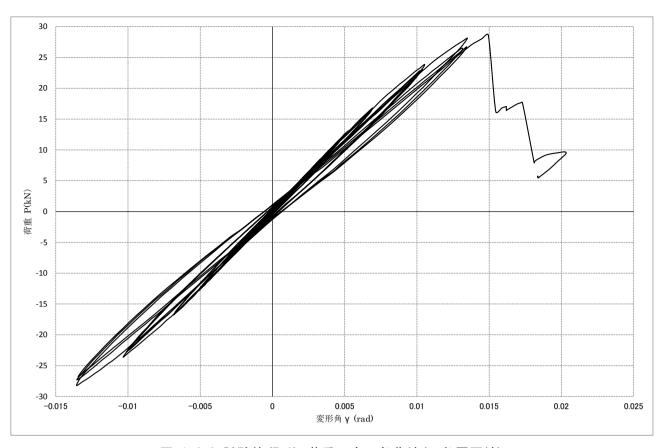


図 1-6.3 試験体(E-3) 荷重-変形角曲線(正負履歴線)

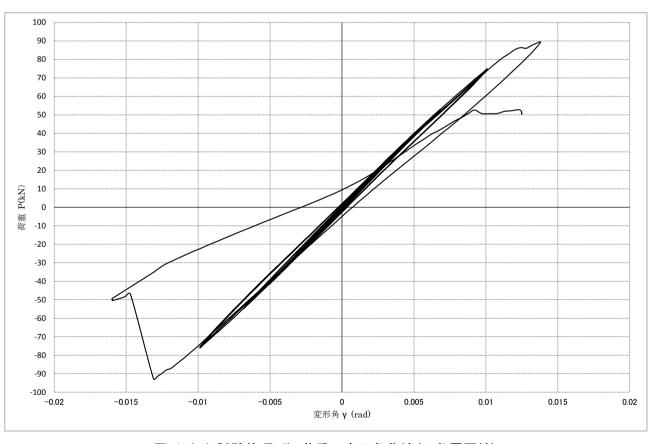


図 1-6.4 試験体(E-4) 荷重-変形角曲線(正負履歴線)

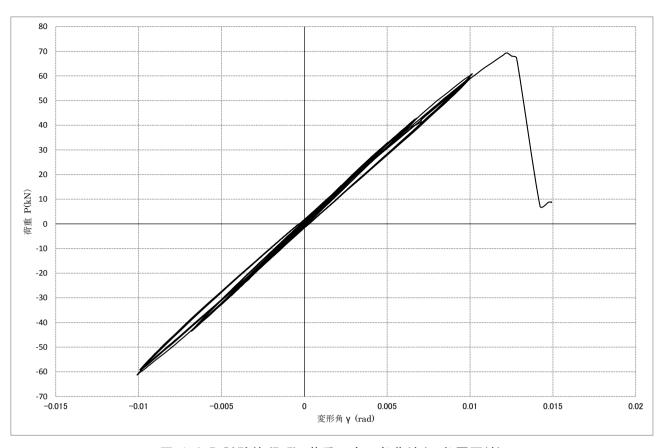


図 1-6.5 試験体(E-5) 荷重-変形角曲線(正負履歴線)

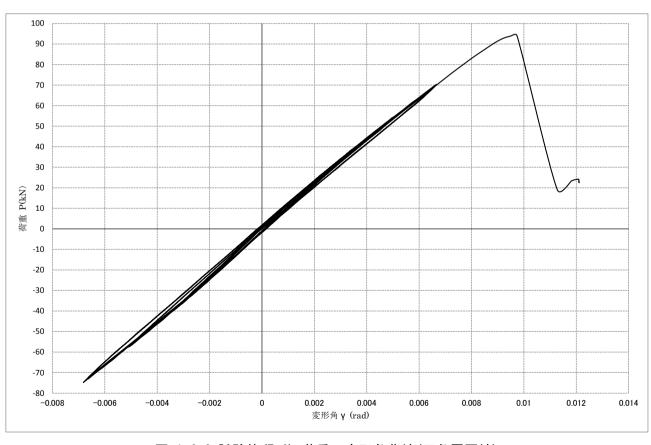


図 1-6.6 試験体(E-6) 荷重-変形角曲線(正負履歴線)

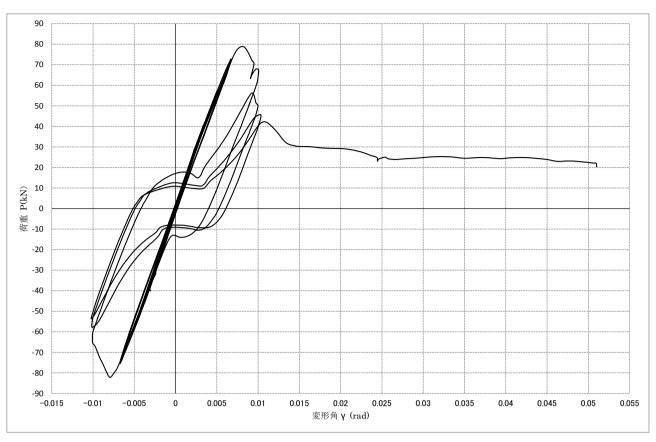


図 1-6.7 試験体(E-7) 荷重-変形角曲線(正負履歴線)

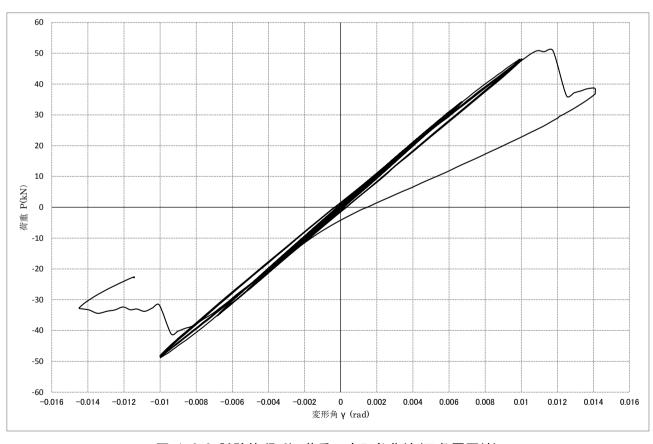


図 1-6.8 試験体(E-8) 荷重-変形角曲線(正負履歴線)

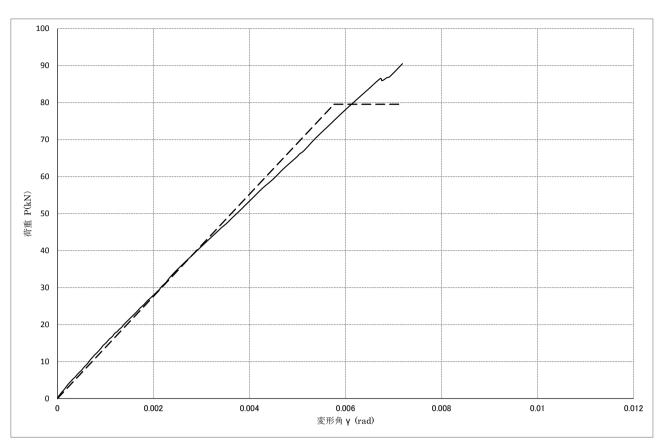


図 1-6.9 試験体(E-1) 荷重一変形角曲線(包絡線) 及び完全弾塑性モデル

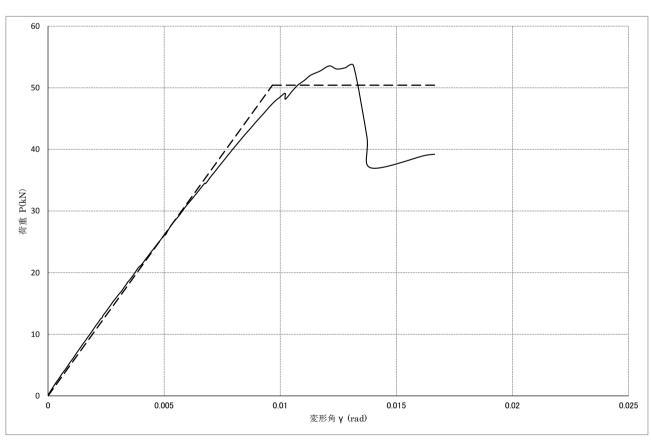


図 1-6.10 試験体(E-2) 荷重-変形角曲線(包絡線) 及び完全弾塑性モデル

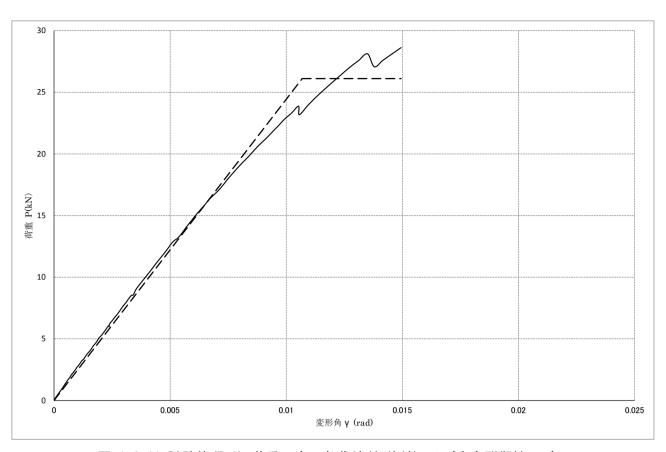


図 1-6.11 試験体(E-3) 荷重-変形角曲線(包絡線) 及び完全弾塑性モデル

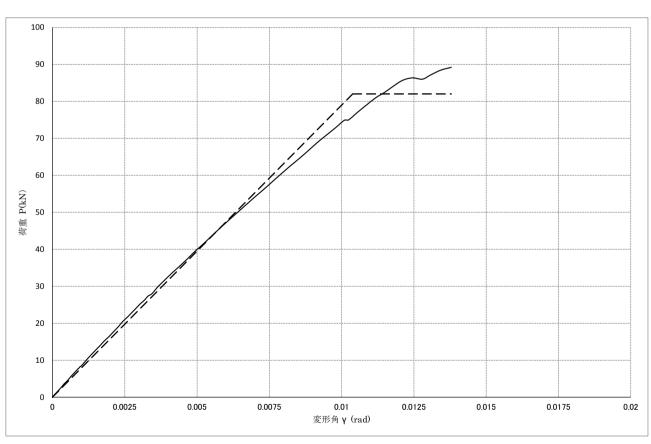


図 1-6.12 試験体(E-4) 荷重-変形角曲線(包絡線) 及び完全弾塑性モデル

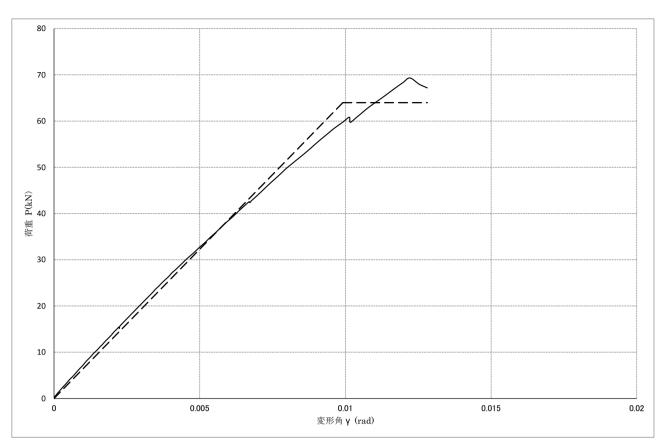


図 1-6.13 試験体(E-5) 荷重-変形角曲線(包絡線) 及び完全弾塑性モデル

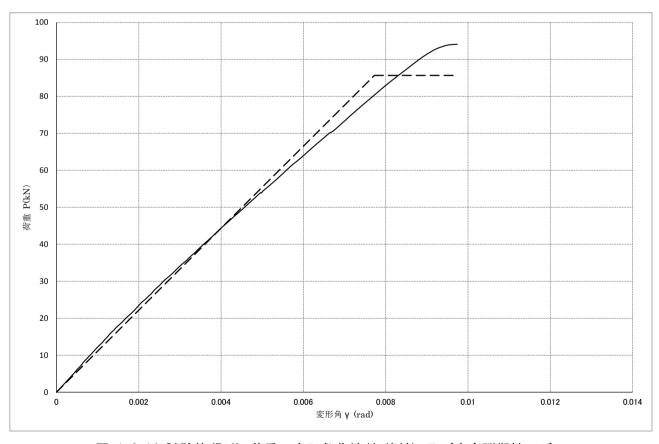


図 1-6.14 試験体(E-6) 荷重-変形角曲線(包絡線) 及び完全弾塑性モデル

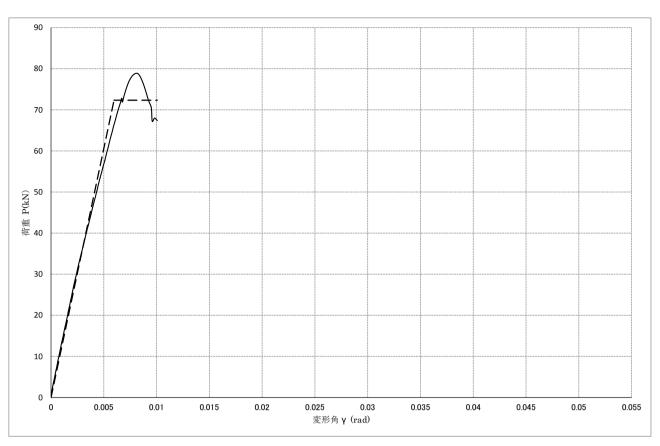


図 1-6.15 試験体(E-7) 荷重-変形角曲線(包絡線) 及び完全弾塑性モデル

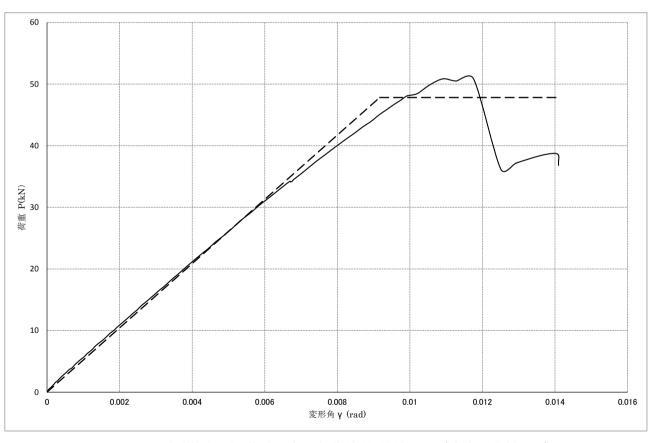


図 1-6.16 試験体(E-8) 荷重-変形角曲線(包絡線) 及び完全弾塑性モデル

1-7. 試験体破壊状況写真

試験体破壊状況を次項以降に添付する。


· 試験体 (E-1)

試験前(全体図)

試験後(接合部引張側拡大)

試験後(LSB 引抜部拡大)

試験後(全体図)

試験後(試験体割裂部拡大)

試験後(接合部圧縮側拡大)

· 試験体 (E-2)

試験前(全体図)

試験後(パネル部拡大1)

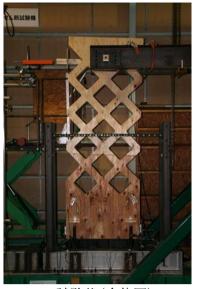
試験後(全体図)

試験後(パネル部拡大 2)

試験後(パネル部拡大3)

試験後(試験体割裂部拡大)

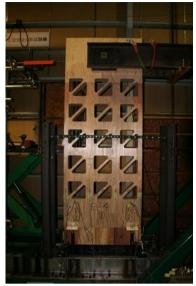
· 試験体 (E-3)


試験前(全体図)

試験後(パネル部拡大1)

試験後(試験体割裂部拡大1)

試験後(全体図)

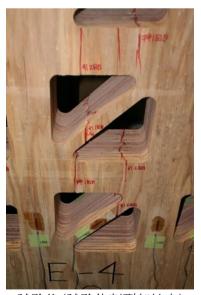


試験後(パネル部拡大2)

試験後(試験体割裂部拡大 2)

· 試験体 (E-4)

試験前(全体図)


試験後(全体図)

試験後(パネル部拡大1)

試験後(パネル部拡大2)

試験後(試験体割裂部拡大)

試験後(パネル部(裏面)拡大)

· 試験体 (E-5)

試験前(全体図)

試験後(全体図)

試験後(パネル部拡大1)

試験後(パネル部拡大2)

試験後(試験体割裂部拡大)

試験後(パネル部(裏面)拡大)

· 試験体 (E-6)

試験前(全体図)

試験後(接合部表側拡大)

試験後(試験体割裂部拡大)

試験後(全体図)

試験後(接合部引張側拡大)

試験後(圧縮側拡大)

· 試験体 (E-7)

試験前(全体図)

試験後(接合部表側拡大)

試験後(接合部圧縮側拡大)

試験後(全体図)

試験後(LSB 引抜部拡大)

· 試験体 (E-8)

試験前(全体図)

試験後(パネル部拡大1)

試験後(全体図)

試験後(パネル部拡大 2)

試験後(パネル部拡大3)

試験後(試験体割裂部拡大)